ﻻ يوجد ملخص باللغة العربية
We study an equivariant extension of the Batalin-Vilkovisky formalism for quantizing gauge theories. Namely, we introduce a general framework to encompass failures of the quantum master equation, and we apply it to the natural equivariant extension of AKSZ solutions of the classical master equation (CME). As examples of the construction, we recover the equivariant extension of supersymmetric Yang-Mills in 2d and of Donaldson-Witten theory.
Kontsevichs formality theorem states that the differential graded Lie algebra of multidifferential operators on a manifold M is L-infinity-quasi-isomorphic to its cohomology. The construction of the L-infinity map is given in terms of integrals of di
We give a conceptual formulation of Kontsevichs `dual construction producing graph cohomology classes from a differential graded Frobenius algebra with an odd scalar product. Our construction -- whilst equivalent to the original one -- is combinatori
The goal of this article is to develop BV (Batalin-Vilkovisky) formalism in the $p$-adic Dwork theory. Based on this formalism, we explicitly construct a $p$-adic dGBV algebra (differential Gerstenhaber-Batalin-Vilkovisky algebra) for a smooth projec
Lecture notes for the course Batalin-Vilkovisky formalism and applications in topological quantum field theory given at the University of Notre Dame in the Fall 2016 for a mathematical audience. In these lectures we give a slow introduction to the pe
In this paper we recover the non-perturbative partition function of 2D~Yang-Mills theory from the perturbative path integral. To achieve this goal, we study the perturbative path integral quantization for 2D~Yang-Mills theory on surfaces with boundar