ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivariant Batalin-Vilkovisky formalism

104   0   0.0 ( 0 )
 نشر من قبل Maxim Zabzine
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study an equivariant extension of the Batalin-Vilkovisky formalism for quantizing gauge theories. Namely, we introduce a general framework to encompass failures of the quantum master equation, and we apply it to the natural equivariant extension of AKSZ solutions of the classical master equation (CME). As examples of the construction, we recover the equivariant extension of supersymmetric Yang-Mills in 2d and of Donaldson-Witten theory.



قيم البحث

اقرأ أيضاً

Kontsevichs formality theorem states that the differential graded Lie algebra of multidifferential operators on a manifold M is L-infinity-quasi-isomorphic to its cohomology. The construction of the L-infinity map is given in terms of integrals of di fferential forms on configuration spaces of points in the upper half-plane. Here we consider configuration spaces of points in the disk and work equivariantly with respect to the rotation group. This leads to considering the differential graded Lie algebra of multivector fields endowed with a divergence operator. In the case of R^d with standard volume form, we obtain an L-infinity morphism of modules over this differential graded Lie algebra from cyclic chains of the algebra of functions to multivector fields. As a first application we give a construction of traces on algebras of functions with star-products associated with unimodular Poisson structures. The construction is based on the Batalin--Vilkovisky quantization of the Poisson sigma model on the disk and in particular on the treatment of its zero modes.
We give a conceptual formulation of Kontsevichs `dual construction producing graph cohomology classes from a differential graded Frobenius algebra with an odd scalar product. Our construction -- whilst equivalent to the original one -- is combinatori cs-free and is based on the Batalin-Vilkovisky formalism, from which its gauge-independence is immediate.
The goal of this article is to develop BV (Batalin-Vilkovisky) formalism in the $p$-adic Dwork theory. Based on this formalism, we explicitly construct a $p$-adic dGBV algebra (differential Gerstenhaber-Batalin-Vilkovisky algebra) for a smooth projec tive complete intersection variety $X$ over a finite field, whose cohomology gives the $p$-adic Dwork cohomology of $X$, and its cochain endomorphism (the $p$-adic Dwork Frobenius operator) which encodes the information of the zeta function $X$. As a consequence, we give a modern deformation theoretic interpretation of Dworks theory of the zeta function of $X$ and derive a formula for the $p$-adic Dwork Frobenius operator in terms of homotopy Lie morphisms and the Bell polynomials.
128 - Pavel Mnev 2017
Lecture notes for the course Batalin-Vilkovisky formalism and applications in topological quantum field theory given at the University of Notre Dame in the Fall 2016 for a mathematical audience. In these lectures we give a slow introduction to the pe rturbative path integral for gauge theories in Batalin-Vilkovisky formalism and the associated mathematical concepts.
231 - Riccardo Iraso , Pavel Mnev 2018
In this paper we recover the non-perturbative partition function of 2D~Yang-Mills theory from the perturbative path integral. To achieve this goal, we study the perturbative path integral quantization for 2D~Yang-Mills theory on surfaces with boundar ies and corners in the Batalin-Vilkovisky formalism (or, more precisely, in its adaptation to the setting with boundaries, compatible with gluing and cutting -- the BV-BFV formalism). We prove that cutting a surface (e.g. a closed one) into simple enough pieces -- building blocks -- and choosing a convenient gauge-fixing on the pieces, and assembling back the partition function on the surface, one recovers the known non-perturbative answers for 2D~Yang-Mills theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا