ﻻ يوجد ملخص باللغة العربية
The far-infrared (FIR) is one of the few wavelength ranges where no astronomical data with sub-arcsec resolution exist yet. Neither of the medium-term satellite projects like SPICA, Millimetron or OST will resolve this malady. Information at high spatial and spectral resolution in the FIR, taken from atomic fine-structure lines, highly excited CO, and especially from water lines would, however, open the door for transformative science. This calls for interferometric concepts. We present first results of our feasibility study IRASSI (Infrared Astronomy Satellite Swarm Interferometry) for a FIR space interferometer. Extending on the principal concept of the ESPRIT study, it features heterodyne interferometry within a swarm of 5 satellite elements. The satellites can drift in and out within a range of several hundred meters, thereby achieving spatial resolutions of <0.1 over the whole wavelength range of 1-6 THz. Precise knowledge on the baselines will be ensured by metrology methods employing laser-based optical frequency combs, for which preliminary ground-based tests have been designed by us. We first show how the science requirements translate into operational and design parameters. We have put much emphasis on the navigational aspects of such a free-flying satellite swarm operating in relatively close vicinity. We hence present work on the formation geometry, the relative dynamics of the swarm, and aspects of our investigation towards attitude estimation. Furthermore, we discuss issues regarding the real-time capability of the autonomous relative positioning system, which is an important aspect for IRASSI where, due to the large raw data rates expected, the interferometric correlation has to be done onboard. We also address questions regarding the spacecraft architecture and how a thermomechanical model is used to study the effect of thermal perturbations on the spacecraft. (abridged)
With the observation of the gravitational wave event of August 17th 2017 the multi-messenger astronomy era has definitely begun. With the opening of this new panorama, it is necessary to have new instruments and a perfect coordination of the existing
The AGILE scientific instrument has been calibrated with a tagged $gamma$-ray beam at the Beam Test Facility (BTF) of the INFN Laboratori Nazionali di Frascati (LNF). The goal of the calibration was the measure of the Point Spread Function (PSF) as a
With the development of the Imaging Atmospheric Cherenkov Technique (IACT), Gamma-ray astronomy has become one of the most interesting and productive fields of astrophysics. Current IACT telescope arrays (MAGIC, H.E.S.S, VERITAS) use photomultiplier
The quest for other habitable worlds and the search for life among them are major goals of modern astronomy. One way to make progress towards these goals is to obtain high-quality spectra of a large number of exoplanets over a broad range of waveleng
One of the possible approaches to detecting optical counterparts of GRBs requires monitoring large parts of the sky. This idea has gained some instrumental support in recent years, such as with the Pi of the Sky project. The broad sky coverage of the