ﻻ يوجد ملخص باللغة العربية
Aesthetics are critically important to market acceptance in many product categories. In the automotive industry in particular, an improved aesthetic design can boost sales by 30% or more. Firms invest heavily in designing and testing new product aesthetics. A single automotive theme clinic costs between $100,000 and $1,000,000, and hundreds are conducted annually. We use machine learning to augment human judgment when designing and testing new product aesthetics. The model combines a probabilistic variational autoencoder (VAE) and adversarial components from generative adversarial networks (GAN), along with modeling assumptions that address managerial requirements for firm adoption. We train our model with data from an automotive partner-7,000 images evaluated by targeted consumers and 180,000 high-quality unrated images. Our model predicts well the appeal of new aesthetic designs-38% improvement relative to a baseline and substantial improvement over both conventional machine learning models and pretrained deep learning models. New automotive designs are generated in a controllable manner for the design team to consider, which we also empirically verify are appealing to consumers. These results, combining human and machine inputs for practical managerial usage, suggest that machine learning offers significant opportunity to augment aesthetic design.
One of the more prominent trends within Industry 4.0 is the drive to employ Robotic Process Automation (RPA), especially as one of the elements of the Lean approach. The full implementation of RPA is riddled with challenges relating both to the reali
Parametric computer-aided design (CAD) is a standard paradigm used to design manufactured objects, where a 3D shape is represented as a program supported by the CAD software. Despite the pervasiveness of parametric CAD and a growing interest from the
Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibil
Machine learning has recently been widely adopted to address the managerial decision making problems, in which the decision maker needs to be able to interpret the contributions of individual attributes in an explicit form. However, there is a trade-
In this article, we perform a review of the state-of-the-art of hybrid machine learning in medical imaging. We start with a short summary of the general developments of the past in machine learning and how general and specialized approaches have been