ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequential Pattern mining of Longitudinal Adverse Events After Left Ventricular Assist Device Implant

135   0   0.0 ( 0 )
 نشر من قبل Faezeh Movahedi
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Left ventricular assist devices (LVADs) are an increasingly common therapy for patients with advanced heart failure. However, implantation of the LVAD increases the risk of stroke, infection, bleeding, and other serious adverse events (AEs). Most post-LVAD AEs studies have focused on individual AEs in isolation, neglecting the possible interrelation, or causality between AEs. This study is the first to conduct an exploratory analysis to discover common sequential chains of AEs following LVAD implantation that are correlated with important clinical outcomes. This analysis was derived from 58,575 recorded AEs for 13,192 patients in International Registry for Mechanical Circulatory Support (INTERMACS) who received a continuousflow LVAD between 2006 and 2015. The pattern mining procedure involved three main steps: (1) creating a bank of AE sequences by converting the AEs for each patient into a single, chronologically sequenced record, (2) grouping patients with similar AE sequences using hierarchical clustering, and (3) extracting temporal chains of AEs for each group of patients using Markov modeling. The mined results indicate the existence of seven groups of sequential chains of AEs, characterized by common types of AEs that occurred in a unique order. The groups were identified as: GRP1: Recurrent bleeding, GRP2: Trajectory of device malfunction & explant, GRP3: Infection, GRP4: Trajectories to transplant, GRP5: Cardiac arrhythmia, GRP6: Trajectory of neurological dysfunction & death, and GRP7: Trajectory of respiratory failure, renal dysfunction & death. These patterns of sequential post-LVAD AEs disclose potential interdependence between AEs and may aid prediction, and prevention, of subsequent AEs in future studies.



قيم البحث

اقرأ أيضاً

Left ventricular assist devices (LVADs) are surgically implanted mechanical pumps that improve survival rates for individuals with advanced heart failure. While life-saving, LVAD therapy is also associated with high morbidity, which can be partially attributed to the difficulties in identifying an LVAD complication before an adverse event occurs. Methods that are currently used to monitor for complications in LVAD-supported individuals require frequent clinical assessments at specialized LVAD centers. Remote analysis of digitally recorded precordial sounds has the potential to provide an inexpensive point-of-care diagnostic tool to assess both device function and the degree of cardiac support in LVAD recipients, facilitating real-time, remote monitoring for early detection of complications. To our knowledge, prior studies of precordial sounds in LVAD-supported individuals have analyzed LVAD noise rather than intrinsic heart sounds, due to a focus on detecting pump complications, and perhaps the obscuring of heart sounds by LVAD noise. In this letter, we describe an adaptive filtering method to remove sounds generated by the LVAD, making it possible to automatically isolate and analyze underlying heart sounds. We present preliminary results describing acoustic signatures of heart sounds extracted from in vivo data obtained from LVAD-supported individuals. These findings are significant as they provide proof-of-concept evidence for further exploration of heart sound analysis in LVAD-supported individuals to identify cardiac abnormalities and changes in LVAD support.
Surface mining has become a major method of coal mining in Central Appalachia alongside the traditional underground mining. Concerns have been raised about the health effects of this surface mining, particularly mountaintop removal mining where coal is mined upon steep mountaintops by removing the mountaintop through clearcutting forests and explosives. We have designed a matched observational study to assess the effects of surface mining in Central Appalachia on adverse birth outcomes. This protocol describes for the study the background and motivation, the sample selection and the analysis plan.
Purpose: To develop a framework for identifying and incorporating candidate confounding interaction terms into a regularised cox regression analysis to refine adverse drug reaction signals obtained via longitudinal observational data. Methods: We con sidered six drug families that are commonly associated with myocardial infarction in observational healthcare data, but where the causal relationship ground truth is known (adverse drug reaction or not). We applied emergent pattern mining to find itemsets of drugs and medical events that are associated with the development of myocardial infarction. These are the candidate confounding interaction terms. We then implemented a cohort study design using regularised cox regression that incorporated and accounted for the candidate confounding interaction terms. Results The methodology was able to account for signals generated due to confounding and a cox regression with elastic net regularisation correctly ranked the drug families known to be true adverse drug reactions above those.
72 - Bangyao Zhao , Lili Zhao 2020
Vaccine safety is a concerning problem of the public, and many signal detecting methods have been developed to identify relative risks between vaccines and adverse events (AEs). Those methods usually focus on individual AEs, where the randomness of d ata is high. The results often turn out to be inaccurate and lack of clinical meaning. The AE ontology contains information about biological similarity of AEs. Based on this, we extend the concept of relative risks (RRs) to AE group level, which allows the possibility of more accurate and meaningful estimation by utilizing data from the whole group. In this paper, we propose the method zGPS.AO (Zero Inflated Gamma Poisson Shrinker with AE ontology) based on the zero inflated negative binomial distribution. This model has two purples: a regression model estimating group level RRs, and a empirical bayes framework to evaluate AE level RRs. The regression part can handle both excess zeros and over dispersion in the data, and the empirical method borrows information from both group level and AE level to reduce data noise and stabilize the AE level result. We have demonstrate the unbiaseness and low variance features of our model with simulated data, and obtained meaningful results coherent with previous studies on the VAERS (Vaccine Adverse Event Reporting System) database. The proposed methods are implemented in the R package zGPS.AO, which can be installed from the Comprehensive R Archive Network, CRAN. The results on VAERS data are visualized using the interactive web app Rshiny.
FP-Growth algorithm is a Frequent Pattern Min- ing (FPM) algorithm that has been extensively used to study correlations and patterns in large scale datasets. While several researchers have designed distributed memory FP-Growth algorithms, it is pivot al to consider fault tolerant FP-Growth, which can address the increasing fault rates in large scale systems. In this work, we propose a novel parallel, algorithm-level fault-tolerant FP-Growth algorithm. We leverage algorithmic properties and MPI advanced features to guarantee an O(1) space complexity, achieved by using the dataset memory space itself for checkpointing. We also propose a recovery algorithm that can use in-memory and disk-based checkpointing, though in many cases the recovery can be completed without any disk access, and incurring no memory overhead for checkpointing. We evaluate our FT algorithm on a large scale InfiniBand cluster with several large datasets using up to 2K cores. Our evaluation demonstrates excellent efficiency for checkpointing and recovery in comparison to the disk-based approach. We have also observed 20x average speed-up in comparison to Spark, establishing that a well designed algorithm can easily outperform a solution based on a general fault-tolerant programming model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا