ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving sound absorption through nonlinear active electroacoustic resonators

48   0   0.0 ( 0 )
 نشر من قبل Xinxin Guo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Absorbing airborne noise at frequencies below 300 Hz is a particularly vexing problem due to the absence of natural sound absorbing materials at these frequencies. The prevailing solution for low-frequency sound absorption is the use of passive narrow-band resonators, whose absorption level and bandwidth can be further enhanced using nonlinear effects. However, these effects are typically triggered at high intensity levels, without much control over the form of the nonlinear absorption mechanism. In this study, we propose, implement, and experimentally demonstrate a nonlinear active control framework on an electroacoustic resonator prototype, allowing for unprecedented control over the form of non-linearity, and arbitrarily low sound intensity thresholds. More specifically, the proposed architecture combines a linear feedforward control on the front pressure through a first microphone located at the front face of the loudspeaker, and a nonlinear feedback on the membrane displacement estimated through the measurement of the pressure inside the back cavity with a second microphone located in the enclosure. It is experimentally shown that even at a weak excitation level, it is possible to observe and control the nonlinear behaviour of the system. Taking the cubic nonlinearity as an example, we demonstrate numerically and experimentally that in the low frequency range ([50 Hz, 500 Hz]), the nonlinear control law allows improving the sound absorption performance, i.e. enlarging the bandwidth of optimal sound absorption while increasing the maximal absorption coefficient value, and producing only a negligible amount of nonlinear distortion. The reported experimental methodology can be extended to implement various types of hybrid linear and/or nonlinear controls, thus opening new avenues for managing wave nonlinearity and achieving non-trivial wave phenomena.

قيم البحث

اقرأ أيضاً

Sound absorption at low frequencies still remains a challenge in both scientific research and engineering practice. Natural porous materials are ineffective in this frequency range, as well as acoustic resonators which present too narrow bandwidth of absorption, thus requiring alternative solutions based on active absorption techniques. In the present work, we propose an active control framework applied on a closed-box loudspeaker to enable the adjustment of the acoustic impedance at the loudspeaker diaphragm. More specifically, based on the proportionality between the pressure inside the enclosure and the axial displacement of the loudspeaker diaphragm at low frequencies, we demonstrate both analytically and experimentally that a PID-like feedback control approach allows tuning independently the compliance, the resistance and the moving mass of the closed-box loudspeaker to implement a prescribed impedance of a single-degree-of-freedom resonator. By considering different control combinations to tailor the resonator characteristics, a perfect absorption (with absorption coefficient equal to 1) is achievable at the target resonance frequency, while enlarging the effective absorption bandwidth. Moreover, the proposed feedback control strategy shows an excellent control accuracy, especially compared to the feedforward-based control formerly reported in the literature. The mismatches between the performance of experimental prototype and the model, likely to result from the control time delay and the inaccuracy in estimating the loudspeaker parameters, can be compensated directly by tuning the control parameters in the control platform. The active resonators implemented through the reported control scheme can be used to build more complex acoustic devices/structures to enable high-efficiency broadband sound absorption or other types of acoustic phenomena such as wavefront shaping.
The rising need for hybrid physical platforms has triggered a renewed interest for the development of agile radio-frequency phononic circuits with complex functionalities. The combination of travelling waves with resonant mechanical elements appears as an appealing means of harnessing elastic vibration. In this work, we demonstrate that this combination can be further enriched by the occurrence of elastic non-linearities induced travelling surface acoustic waves (SAW) interacting with a pair of otherwise linear micron-scale mechanical resonators. Reducing the resonator gap distance and increasing the SAW amplitude results in a frequency softening of the resonator pair response that lies outside the usual picture of geometrical Duffing non-linearities. The dynamics of the SAW excitation scheme allows further control of the resonator motion, notably leading to circular polarization states. These results paves the way towards versatile high-frequency phononic-MEMS/NEMS circuits fitting both classical and quantum technologies.
A generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous media saturated with a viscothermal fluid has been recently proposed, which takes into account both temporal and spatial dispersion. Here, we consider applying this theory capable to describe resonance effects, to the case of sound propagation through an array of Helmholtz resonators whose unusual metamaterial properties such as negative bulk moduli, have been experimentally demonstrated. Three different calculations are performed, validating the results of the nonlocal theory, relating to the frequency-dependent Bloch wavenumber and bulk modulus of the first normal mode, for 1D propagation in 2D or 3D periodic structures.
203 - Zhenwei. Zhou , Jiaming. Wu , 2019
This paper proposes a noise insulation cavity composed of two parallel plates and a micro-perforated plate insertion parallel to the plates, which divides the cavity between the plates into two parts. A theoretical model was established that takes in to account of all the couplings among the major parts of the structure, namely the two solid plates, the perforated plate, and the air cavity, together with the simply support boundary conditions. Numerical calculations were performed with different parameters of the micro-perforated plate including its position, perforation ratio, plate thickness, and hole diameters. The calculations indicated that the proposed double-panel structure with a micro-perforated plate insertion exhibited significant improvements in the sound transmission loss (STL) in certain frequency range as compared to a double- or triple-panel structure without a micro-perforated plate. Below 200 Hz the improvement in STL is mainly due to the weakening of the resonances by the energy dissipation of the perforated plate, while in the medium to high frequency range the STL enhancement is mostly due to the dissipation by the perforated plate in the broad frequency band. The theoretical results are in good agreement with the experimental results.
81 - U. Buchenau 2020
The paper presents a description of the sound wave absorption in glasses, from the lowest temperatures up to the glass transition, in terms of two compatible phenomenological models. Resonant tunneling, the rise of the relaxational tunneling to the t unneling plateau and the crossover to classical relaxation are universal features of glasses and are well described by the extension of the tunneling model to include soft vibrations and low barrier relaxations, the soft potential model. Its further extension to non-universal features at higher temperatures is the very flexible Gilroy-Phillips model, which allows to determine the barrier density of the energy landscape of the specific glass from the frequency and temperature dependence of the sound wave absorption in the classical relaxation domain. To apply it properly at elevated temperatures, one needs its formulation in terms of the shear compliance. As one approaches the glass transition, universality sets in again with an exponential rise of the barrier density reflecting the frozen fast Kohlrausch t^beta-tail (in time t, with beta close to 1/2) of the viscous flow at the glass temperature. The validity of the scheme is checked for literature data of several glasses and polymers with and without secondary relaxation peaks. The frozen Kohlrausch tail of the mechanical relaxation shows no indication of the strongly temperature-dependent excess wing observed in dielectric data of molecular glasses with hydrogen bonds. Instead, the mechanical relaxation data indicate an energy landscape describable with a frozen temperature-independent barrier density for any glass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا