ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlocal description of sound propagation through an array of Helmholtz resonators

56   0   0.0 ( 0 )
 نشر من قبل Navid Nemati
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous media saturated with a viscothermal fluid has been recently proposed, which takes into account both temporal and spatial dispersion. Here, we consider applying this theory capable to describe resonance effects, to the case of sound propagation through an array of Helmholtz resonators whose unusual metamaterial properties such as negative bulk moduli, have been experimentally demonstrated. Three different calculations are performed, validating the results of the nonlocal theory, relating to the frequency-dependent Bloch wavenumber and bulk modulus of the first normal mode, for 1D propagation in 2D or 3D periodic structures.

قيم البحث

اقرأ أيضاً

Absorbing airborne noise at frequencies below 300 Hz is a particularly vexing problem due to the absence of natural sound absorbing materials at these frequencies. The prevailing solution for low-frequency sound absorption is the use of passive narro w-band resonators, whose absorption level and bandwidth can be further enhanced using nonlinear effects. However, these effects are typically triggered at high intensity levels, without much control over the form of the nonlinear absorption mechanism. In this study, we propose, implement, and experimentally demonstrate a nonlinear active control framework on an electroacoustic resonator prototype, allowing for unprecedented control over the form of non-linearity, and arbitrarily low sound intensity thresholds. More specifically, the proposed architecture combines a linear feedforward control on the front pressure through a first microphone located at the front face of the loudspeaker, and a nonlinear feedback on the membrane displacement estimated through the measurement of the pressure inside the back cavity with a second microphone located in the enclosure. It is experimentally shown that even at a weak excitation level, it is possible to observe and control the nonlinear behaviour of the system. Taking the cubic nonlinearity as an example, we demonstrate numerically and experimentally that in the low frequency range ([50 Hz, 500 Hz]), the nonlinear control law allows improving the sound absorption performance, i.e. enlarging the bandwidth of optimal sound absorption while increasing the maximal absorption coefficient value, and producing only a negligible amount of nonlinear distortion. The reported experimental methodology can be extended to implement various types of hybrid linear and/or nonlinear controls, thus opening new avenues for managing wave nonlinearity and achieving non-trivial wave phenomena.
99 - C. J. Cotter , D. D. Holm 2013
We derive a family of ideal (nondissipative) 3D sound-proof fluid models that includes both the Lipps-Hemler anelastic approximation (AA) and the Durran pseudo-incompressible approximation (PIA). This family of models arises in the Euler-Poincar{e} f ramework involving a constrained Hamiltons principle expressed in the Eulerian fluid description. The derivation in this framework establishes the following properties of each member of the entire family: the Kelvin-Noether circulation theorem, conservation of potential vorticity on fluid parcels, a Lie-Poisson Hamiltonian formulation possessing conserved Casimirs, a conserved domain integrated energy and an associated variational principle satisfied by the equilibrium solutions. smallskip Having set the stage with the derivations of 3D models using the constrained Hamiltons principle, we then derive the corresponding 2D vertical slice models for these sound-proof theories.
Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number loco motion of a self-propelled microswimmer moving inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically examined. The interfacial viscous stresses induced by the surfactant are described by the well-established Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite series of harmonic components. Our results offer useful insights into guiding principles for the control of confined active matter systems and support the objective of utilizing synthetic microswimmers to drive drops for targeted drug delivery applications.
In this paper, the coupled Rayleigh-Taylor-Kelvin-Helmholtz instability(RTI, KHI and RTKHI, respectively) system is investigated using a multiple-relaxation-time discrete Boltzmann model. Both the morphological boundary length and thermodynamic noneq uilibrium (TNE) strength are introduced to probe the complex configurations and kinetic processes. In the simulations, RTI always plays a major role in the later stage, while the main mechanism in the early stage depends on the comparison of buoyancy and shear strength. It is found that, both the total boundary length $L$ of the condensed temperature field and the mean heat flux strength $D_{3,1}$ can be used to measure the ratio of buoyancy to shear strength, and to quantitatively judge the main mechanism in the early stage of the RTKHI system. Specifically, when KHI (RTI) dominates, $L^{KHI} > L^{RTI}$ ($L^{KHI} < L^{RTI}$), $D_{3,1}^{KHI} > D_{3,1}^{RTI}$ ($D_{3,1}^{KHI} < D_{3,1}^{RTI}$); when KHI and RTI are balanced, $L^{KHI} = L^{RTI}$, $D_{3,1}^{KHI} = D_{3,1}^{RTI}$. A second sets of findings are as below: For the case where the KHI dominates at earlier time and the RTI dominates at later time, the evolution process can be roughly divided into two stages. Before the transition point of the two stages, $L^{RTKHI}$ initially increases exponentially, and then increases linearly. Hence, the ending point of linear increasing $L^{RTKHI}$ can work as a geometric criterion for discriminating the two stages. The TNE quantity, heat flux strength $D_{3,1}^{RTKHI}$, shows similar behavior. Therefore, the ending point of linear increasing $D_{3,1}^{RTKHI}$ can work as a physical criterion for discriminating the two stages.
Experiments on generation of 1, 2, 4, and 6 sonoluminescent bubbles in water with an external ultrasound source in an acoustic sphere resonator with glass walls have been carried out. Theoretical examination has shown that the observed excitation fre quencies could be described with a good accuracy taking into account that the velocities and pressures of the contacting media on the external and internal resonator surfaces are equal. The necessity of accounting for oscillations with non--zero self--values of angular momentum operator has been shown when describing the features of localization of several bubbles. To explain a strangely small distance between the bubbles in the case of two--bubble sonoluminescence the following possible explanations have been proposed: a) mechanism of space splitting of a mode with a singular angular momentum and b) mechanism of secondary excitation when one of the bubbles is trapped into the acoustic trap created by high--frequency vibrations arising simultaneously when the other bubble sonoluminescence occurs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا