ﻻ يوجد ملخص باللغة العربية
How can we understand classification decisions made by deep neural networks? Many existing explainability methods rely solely on correlations and fail to account for confounding, which may result in potentially misleading explanations. To overcome this problem, we define the Causal Concept Effect (CaCE) as the causal effect of (the presence or absence of) a human-interpretable concept on a deep neural nets predictions. We show that the CaCE measure can avoid errors stemming from confounding. Estimating CaCE is difficult in situations where we cannot easily simulate the do-operator. To mitigate this problem, we use a generative model, specifically a Variational AutoEncoder (VAE), to measure VAE-CaCE. In an extensive experimental analysis, we show that the VAE-CaCE is able to estimate the true concept causal effect, compared to baselines for a number of datasets including high dimensional images.
The black-box nature of deep neural networks (DNNs) makes it impossible to understand why a particular output is produced, creating demand for Explainable AI. In this paper, we show that statistical fault localization (SFL) techniques from software e
Deep Neural networks have gained lots of attention in recent years thanks to the breakthroughs obtained in the field of Computer Vision. However, despite their popularity, it has been shown that they provide limited robustness in their predictions. I
We study the robustness of image classifiers to temporal perturbations derived from videos. As part of this study, we construct two datasets, ImageNet-Vid-Robust and YTBB-Robust , containing a total 57,897 images grouped into 3,139 sets of perceptual
The goal of this paper is to analyze an intriguing phenomenon recently discovered in deep networks, namely their instability to adversarial perturbations (Szegedy et. al., 2014). We provide a theoretical framework for analyzing the robustness of clas
Several recent works have shown that state-of-the-art classifiers are vulnerable to worst-case (i.e., adversarial) perturbations of the datapoints. On the other hand, it has been empirically observed that these same classifiers are relatively robust