ترغب بنشر مسار تعليمي؟ اضغط هنا

GRID: a Student Project to Monitor the Transient Gamma-Ray Sky in the Multi-Messenger Astronomy Era

106   0   0.0 ( 0 )
 نشر من قبل Hua Feng
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Gamma-Ray Integrated Detectors (GRID) is a space mission concept dedicated to monitoring the transient gamma-ray sky in the energy range from 10 keV to 2 MeV using scintillation detectors onboard CubeSats in low Earth orbits. The primary targets of GRID are the gamma-ray bursts (GRBs) in the local universe. The scientific goal of GRID is, in synergy with ground-based gravitational wave (GW) detectors such as LIGO and VIRGO, to accumulate a sample of GRBs associated with the merger of two compact stars and study jets and related physics of those objects. It also involves observing and studying other gamma-ray transients such as long GRBs, soft gamma-ray repeaters, terrestrial gamma-ray flashes, and solar flares. With multiple CubeSats in various orbits, GRID is unaffected by the Earth occultation and serves as a full-time and all-sky monitor. Assuming a horizon of 200 Mpc for ground-based GW detectors, we expect to see a few associated GW-GRB events per year. With about 10 CubeSats in operation, GRID is capable of localizing a faint GRB like 170817A with a 90% error radius of about 10 degrees, through triangulation and flux modulation. GRID is proposed and developed by students, with considerable contribution from undergraduate students, and will remain operated as a student project in the future. The current GRID collaboration involves more than 20 institutes and keeps growing. On August 29th, the first GRID detector onboard a CubeSat was launched into a Sun-synchronous orbit and is currently under test.


قيم البحث

اقرأ أيضاً

106 - Henrike Fleischhack 2021
Recent detections of gravitational wave signals and neutrinos from gamma-ray sources have ushered in the era of multi-messenger astronomy, while highlighting the importance of gamma-ray observations for this emerging field. AMEGO-X, the All-sky Mediu m Energy Gamma-Ray Observatory eXplorer, is an MeV gamma-ray instrument that will survey the sky in the energy range from hundreds of keV to one GeV with unprecedented sensitivity. AMEGO-X will detect gamma-ray photons both via Compton interactions and pair production processes, bridging the sensitivity gap between hard X-rays and high-energy gamma rays. AMEGO-X will provide important contributions to multi-messenger science and time-domain gamma-ray astronomy, studying e.g. high-redshift blazars, which are probable sources of astrophysical neutrinos, and gamma-ray bursts. I will present an overview of the instrument and science program.
113 - G. La Mura , P. Assis , A. Blanco 2019
The detection of gravitational waves and neutrinos from astrophysical sources with gamma-ray counterparts officially started the era of Multi-Messenger Astronomy. Their transient and extreme nature implies that monitoring the VHE sky is fundamental t o investigate the non-electromagnetic signals. However, the limited effective area of space-borne instruments prevents observations above a few hundred GeV, while the small field of view and low duty cycle of IACTs make them unsuited for extensive monitoring activities and prompt response to transients. Extensive Air Shower arrays (EAS) can provide a large field of view, a wide effective area and a very high duty cycle. Their main difficulty is the distinction between gamma-ray and cosmic-ray initiated air showers, especially below the TeV range. Here we present some case studies stressing the importance that a new EAS array in the Southern Hemisphere will be able to survey the sky from below 100 GeV up to several TeV. In the energy domain between 100 and 400 GeV we expect the strongest electromagnetic signatures of the acceleration of ultra-relativistic particles in sources like SNRs, blazar jets and gamma-ray bursts, as recently proved by IACT observations. This spectral window is also crucial to understand the Universe opacity to high energy radiation, thus providing constraints on the cosmological parameters. We will discuss the implications of VHE radiation on the mechanisms at work and we will focus on the advantages resulting from the ability to monitor the energy window lying between the domain of space-borne detectors and ground-based facilities.
This report provides an overview of recent work that harnesses the Big Data Revolution and Large Scale Computing to address grand computational challenges in Multi-Messenger Astrophysics, with a particular emphasis on real-time discovery campaigns. A cknowledging the transdisciplinary nature of Multi-Messenger Astrophysics, this document has been prepared by members of the physics, astronomy, computer science, data science, software and cyberinfrastructure communities who attended the NSF-, DOE- and NVIDIA-funded Deep Learning for Multi-Messenger Astrophysics: Real-time Discovery at Scale workshop, hosted at the National Center for Supercomputing Applications, October 17-19, 2018. Highlights of this report include unanimous agreement that it is critical to accelerate the development and deployment of novel, signal-processing algorithms that use the synergy between artificial intelligence (AI) and high performance computing to maximize the potential for scientific discovery with Multi-Messenger Astrophysics. We discuss key aspects to realize this endeavor, namely (i) the design and exploitation of scalable and computationally efficient AI algorithms for Multi-Messenger Astrophysics; (ii) cyberinfrastructure requirements to numerically simulate astrophysical sources, and to process and interpret Multi-Messenger Astrophysics data; (iii) management of gravitational wave detections and triggers to enable electromagnetic and astro-particle follow-ups; (iv) a vision to harness future developments of machine and deep learning and cyberinfrastructure resources to cope with the scale of discovery in the Big Data Era; (v) and the need to build a community that brings domain experts together with data scientists on equal footing to maximize and accelerate discovery in the nascent field of Multi-Messenger Astrophysics.
The new 1-m f/4 fast-slew Zadko Telescope was installed in June 2008 about 70 km north of Perth, Western Australia. It is the only metre-class optical facility at this southern latitude between the east coast of Australia and South Africa, and can ra pidly image optical transients at a longitude not monitored by other similar facilities. We report on first imaging tests of a pilot program of minor planet searches, and Target of Opportunity observations triggered by the Swift satellite. In 12 months, 6 gamma-ray burst afterglows were detected, with estimated magnitudes; two of them, GRB 090205 (z = 4.65) and GRB 090516 (z = 4.11), are among the most distant optical transients imaged by an Australian telescope. Many asteroids were observed in a systematic 3-month search. In September 2009, an automatic telescope control system was installed, which will be used to link the facility to a global robotic telescope network; future targets will include fast optical transients triggered by highenergy satellites, radio transient detections, and LIGO gravitational wave candidate events. We also outline the importance of the facility as a potential tool for education, training, and public outreach.
72 - F. Brun , Q. Piel , M. de Naurois 2020
Transient and variable phenomena in astrophysical sources are of particular importance to understand the underlying gamma-ray emission processes. In the very-high energy gamma-ray domain, transient and variable sources are related to charged particle acceleration processes that could for instance help understanding the origin of cosmic-rays. The imaging atmospheric Cherenkov technique used for gamma-ray astronomy above $sim 100$ GeV is well suited for detecting such events. However, the standard analysis methods are not optimal for such a goal and more sensitive methods are specifically developed in this publication. The sensitivity improvement could therefore be helpful to detect brief and faint transient sources such as Gamma-Ray Bursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا