ترغب بنشر مسار تعليمي؟ اضغط هنا

The Zadko Telescope: A Southern Hemisphere Telescope for Optical Transient Searches, Multi-Messenger Astronomy and Education

85   0   0.0 ( 0 )
 نشر من قبل David Coward
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The new 1-m f/4 fast-slew Zadko Telescope was installed in June 2008 about 70 km north of Perth, Western Australia. It is the only metre-class optical facility at this southern latitude between the east coast of Australia and South Africa, and can rapidly image optical transients at a longitude not monitored by other similar facilities. We report on first imaging tests of a pilot program of minor planet searches, and Target of Opportunity observations triggered by the Swift satellite. In 12 months, 6 gamma-ray burst afterglows were detected, with estimated magnitudes; two of them, GRB 090205 (z = 4.65) and GRB 090516 (z = 4.11), are among the most distant optical transients imaged by an Australian telescope. Many asteroids were observed in a systematic 3-month search. In September 2009, an automatic telescope control system was installed, which will be used to link the facility to a global robotic telescope network; future targets will include fast optical transients triggered by highenergy satellites, radio transient detections, and LIGO gravitational wave candidate events. We also outline the importance of the facility as a potential tool for education, training, and public outreach.

قيم البحث

اقرأ أيضاً

Extensice Air Shower (EAS) arrays are survey instruments able to monitor continuously all the overhead sky. Their wide field of view (about 2 sr) is ideal to complement directional detectors by performing unbiased sky surveys, by monitoring variable or flaring sources, such as AGNs, and to discover transients or explosive events (GRBs). With an energy threshold in the 100 GeV range EAS arrays are transient factories. All EAS arrays presently in operation or under installation are located in the Northern hemisphere. A new survey instrument located in the Southern Hemisphere should be a high priority to monitor the Inner Galaxy and the Galactic Center. STACEX is the proposal of a hybrid detector with ARGO-like RPCs coupled to Water Cherenkov Detectors (WCDs) mainly to lower the energy threshold at 100 GeV level. In this contribution we introduce the possibility of improving the low energy sensitivity of survey instruments by equipping RPCs, which were proved to be optimal detectors at 100 GeV energies by the ARGO-YBJ Collaboration, with WCDs. An EAS detector with high sensitivity between 100 GeV and 1 TeV would be a valuable complementary transient detector in the CTA era.
132 - D.M. Coward , B. Gendre , P. Tanga 2016
The Zadko Telescope is a 1 m f/4 Cassegrain telescope, situated in the state of Western Australia about 80 km north of Perth. The facility plays a niche role in Australian astronomy, as it is the only meter class facility in Australia dedicated to au tomated follow-up imaging of alerts or triggers received from different external instruments/detectors spanning the entire electromagnetic spectrum. Furthermore the location of the facility at a longitude not covered by other meter class facilities provides an important resource for time critical projects. This paper reviews the status of the Zadko facility and science projects since it began robotic operations in March 2010. We report on major upgrades to the infrastructure and equipment (2012-2014) that has resulted in significantly improved robotic operations. Secondly, we review the core science projects, which include automated rapid follow-up of gamma ray burst (GRB) optical afterglows, imaging of neutrino counterpart candidates from the ANTARES neutrino observatory, photometry of rare (Barbarian) asteroids, supernovae searches in nearby galaxies. Finally, we discuss participation in newly commencing international projects, including the optical follow-up of gravitational wave candidates from the U.S. and European gravitational wave observatory network, and present first tests for very low latency follow-up of fast radio bursts. In the context of these projects, we outline plans for a future upgrade that will optimise the facility for alert triggered imaging from the radio, optical, high-energy, neutrino and gravitational wave bands.
The Cherenkov Telescope Array (CTA) is a next generation ground-based very-high-energy gamma-ray observatory that will allow for observations in the >10 GeV range with unprecedented photon statistics and sensitivity. This will enable the investigatio n of the yet-marginally explored physics of short-time-scale transient events. CTA will thus become an invaluable instrument for the study of the physics of the most extreme and violent objects and their interactions with the surrounding environment. The CTA Transient program includes follow-up observations of a wide range of multi-wavelength and multi-messenger alerts, ranging from compact galactic binary systems to extragalactic events such as gamma-ray bursts (GRBs), core-collapse supernovae and bright AGN flares. In recent years, the first firm detection of GRBs by current Cherenkov telescope collaborations, the proven connection between gravitational waves and short GRBs, as well as the possible neutrino-blazar association with TXS~0506+056 have shown the importance of coordinated follow-up observations triggered by these different cosmic signals in the framework of the birth of multi-messenger astrophysics. In the next years, CTA will play a major role in these types of observations by taking advantage of its fast slewing (especially for the CTA Large Size Telescopes), large effective area and good sensitivity, opening new opportunities for time-domain astrophysics in an energy range not affected by selective absorption processes typical of other wavelengths. In this contribution we highlight the common approach adopted by the CTA Transients physics working group to perform the study of transient sources in the very-high-energy regime.
The discovery of gravitational waves, high-energy neutrinos or the very-high-energy counterpart of gamma-ray bursts has revolutionized the high-energy and transient astrophysics community. The development of new instruments and analysis techniques wi ll allow the discovery and/or follow-up of new transient sources. We describe the prospects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory, for multi-messenger and transient astrophysics in the decade ahead. CTA will explore the most extreme environments via very-high-energy observations of compact objects, stellar collapse events, mergers and cosmic-ray accelerators.
77 - B. Gendre 2020
The 1.0 meter f/4 fast-slew Zadko telescope is located in Western Australia, approximately seventy kilometers north of Perth at Yeal in the Shire of Gingin in a dedicated low-luminosity area. It is the only meter class optical research facility at th is southern latitude between the east coast of Australia and South Africa and can rapidly image optical transients at a longitude not monitored by other similar facilities. We review here the main results achieved during the last decade and give some points toward the goals set for future years. Finally we discuss the modifications and improvements we had to perform in the facility to reach these new goals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا