ترغب بنشر مسار تعليمي؟ اضغط هنا

Cavity mediated dissipative coupling of distant magnetic moments: theory and experiment

199   0   0.0 ( 0 )
 نشر من قبل Pengchao Xu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate long-range coherent and dissipative coupling between two spatially separated magnets while both are coupled to a microwave cavity. A careful examination of the system shows that the indirect interaction between two magnon modes is dependent on their individual mechanisms of direct coupling to the cavity. If both magnon modes share the same form of coupling to the cavity (either coherent or dissipative), then the indirect coupling between them will produce level repulsion. Conversely, if the magnon modes have different forms of coupling to the cavity (one coherent and one dissipative), then their indirect coupling will produce level attraction. We further demonstrate the cavity-mediate nature of the indirect interaction through investigating the dependence of the indirect coupling strength on the frequency detuning between the magnon and cavity modes. Our work theoretically and experimentally explores indirect cavity mediate interactions in systems exhibiting both coherent and dissipative coupling, which opens a new avenue for controlling and utilizing light-matter interactions.

قيم البحث

اقرأ أيضاً

Scalable architectures for quantum information technologies require to selectively couple long-distance qubits while suppressing environmental noise and cross-talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot t o a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated long-distance coupling effectively minimizes undesirable direct cross-talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
Using first-principles calculations we demonstrate sizable exchange coupling between a magnetic molecule and a magnetic substrate via a graphene layer. As a model system we consider cobaltocene (CoCp$_2$) adsorbed on graphene deposited on Ni(111). We find that the magnetic coupling between the molecule and the substrate is antiferromagnetic and varies considerably depending on the molecule structure, the adsorption geometry, and the stacking of graphene on Ni(111). We show how this coupling can be tuned by intercalating a magnetic monolayer, e.g. Fe or Co, between graphene and Ni(111). We identify the leading mechanism responsible for the coupling to be the spatial and energy matching of the frontier orbitals of CoCp$_2$ and graphene close to the Fermi level, and we demonstrate the role of graphene as an electronic decoupling layer, yet allowing spin communication between molecule and substrate.
Using electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusi on length, instead depending on the interplay between the local and global properties of the coupled system, enabling systematic spin current control over large distance scales (several centimeters in this work). This flexibility opens the door to improved spin current generation and manipulation for cavity spintronic devices.
62 - B. M. Yao , Y. S. Gui , Y. Xiao 2015
We have theoretically and experimentally investigated the dispersion of the cavity-magnon-polariton (CMP) in a 1D configuration, created by inserting a low damping magnetic insulator into a high-quality 1D microwave cavity. By simplifying the full-wa ve simulation based on the transfer matrix approach in the long wavelength limit, an analytic approximation of the CMP dispersion has been obtained. The resultant coupling strength of the CMP shows different dependence on the sample thickness as well as the permittivity of the sample, determined by the parity of the cavity modes. These scaling effects of the cavity and material parameters are confirmed by experimental data. Our work provide a detailed understanding of the 1D CMP, which could help to engineer coupled magnon-photon system.
Engineering the interaction between light and matter is an important goal in the emerging field of quantum opto-electronics. Thanks to the use of cavity quantum electrodynamics architectures, one can envision a fully hybrid multiplexing of quantum co nductors. Here, we use such an architecture to couple two quantum dot circuits . Our quantum dots are separated by 200 times their own size, with no direct tunnel and electrostatic couplings between them. We demonstrate their interaction, mediated by the cavity photons. This could be used to scale up quantum bit architectures based on quantum dot circuits or simulate on-chip phonon-mediated interactions between strongly correlated electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا