ﻻ يوجد ملخص باللغة العربية
We have theoretically and experimentally investigated the dispersion of the cavity-magnon-polariton (CMP) in a 1D configuration, created by inserting a low damping magnetic insulator into a high-quality 1D microwave cavity. By simplifying the full-wave simulation based on the transfer matrix approach in the long wavelength limit, an analytic approximation of the CMP dispersion has been obtained. The resultant coupling strength of the CMP shows different dependence on the sample thickness as well as the permittivity of the sample, determined by the parity of the cavity modes. These scaling effects of the cavity and material parameters are confirmed by experimental data. Our work provide a detailed understanding of the 1D CMP, which could help to engineer coupled magnon-photon system.
The full coherent control of hybridized systems such as strongly coupled cavity photon-magnon states is a crucial step to enable future information processing technologies. Thus, it is particularly interesting to engineer deliberate control mechanism
A photon-magnon hybrid system can be realised by coupling the electron spin resonance of a magnetic material to a microwave cavity mode. The quasiparticles associated with the system dynamics are the cavity magnon polaritons, which arise from the mix
In the emerging field of cavity optomagnonics, photons are coupled coherently to magnons in solid-state systems. These new systems are promising for implementing hybrid quantum technologies. Being able to prepare Fock states in such platforms is an e
Using electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusi
In this manuscript we will gather clear experimental evidences of remote coherence between two polariton condensate droplets that have never overlapped in real space and discuss how these interferences in momentum space can be used to estimate the critical temperature for the BEC like transition.