ترغب بنشر مسار تعليمي؟ اضغط هنا

A Data-Driven Game-Theoretic Approach for Behind-the-Meter PV Generation Disaggregation

57   0   0.0 ( 0 )
 نشر من قبل Fankun Bu
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Rooftop solar photovoltaic (PV) power generator is a widely used distributed energy resource (DER) in distribution systems. Currently, the majority of PVs are installed behind-the-meter (BTM), where only customers net demand is recorded by smart meters. Disaggregating BTM PV generation from net demand is critical to utilities for enhancing grid-edge observability. In this paper, a data-driven approach is proposed for BTM PV generation disaggregation using solar and demand exemplars. First, a data clustering procedure is developed to construct a library of candidate load/solar exemplars. To handle the volatility of BTM resources, a novel game-theoretic learning process is proposed to adaptively generate optimal composite exemplars using the constructed library of candidate exemplars, through repeated evaluation of disaggregation residuals. Finally, the composite native demand and solar exemplars are employed to disaggregate solar generation from net demand using a semi-supervised source separator. The proposed methodology has been verified using real smart meter data and feeder models.



قيم البحث

اقرأ أيضاً

With the emergence of cost effective battery storage and the decline in the solar photovoltaic (PV) levelized cost of energy (LCOE), the number of behind-the-meter solar PV systems is expected to increase steadily. The ability to estimate solar gener ation from these latent systems is crucial for a range of applications, including distribution system planning and operation, demand response, and non-intrusive load monitoring (NILM). This paper investigates the problem of disaggregating solar generation from smart meter data when historical disaggregated data from the target home is unavailable, and deployment characteristics of the PV system are unknown. The proposed approach entails inferring the physical characteristics from smart meter data and disaggregating solar generation using an iterative algorithm. This algorithm takes advantage of solar generation data (aka proxy measurements) from a few sites that are located in the same area as the target home, and solar generation data synthesized using a physical PV model. We evaluate our methods with 4 different proxy settings on around 160 homes in the United States and Australia, and show that the solar disaggregation accuracy is improved by 32.31% and 15.66% over two state-of-the-art methods using only one real proxy along with three synthetic proxies. Furthermore, we demonstrate that using the disaggregated home load rather than the net load data could improve the overall accuracy of three popular NILM methods by at least 22%.
157 - Feiran Jia , Aditya Mate , Zun Li 2021
We present the design and analysis of a multi-level game-theoretic model of hierarchical policy-making, inspired by policy responses to the COVID-19 pandemic. Our model captures the potentially mismatched priorities among a hierarchy of policy-makers (e.g., federal, state, and local governments) with respect to two main cost components that have opposite dependence on the policy strength, such as post-intervention infection rates and the cost of policy implementation. Our model further includes a crucial third factor in decisions: a cost of non-compliance with the policy-maker immediately above in the hierarchy, such as non-compliance of state with federal policies. Our first contribution is a closed-form approximation of a recently published agent-based model to compute the number of infections for any implemented policy. Second, we present a novel equilibrium selection criterion that addresses common issues with equilibrium multiplicity in our setting. Third, we propose a hierarchical algorithm based on best response dynamics for computing an approximate equilibrium of the hierarchical policy-making game consistent with our solution concept. Finally, we present an empirical investigation of equilibrium policy strategies in this game in terms of the extent of free riding as well as fairness in the distribution of costs depending on game parameters such as the degree of centralization and disagreements about policy priorities among the agents.
K-cores are maximal induced subgraphs where all vertices have degree at least k. These dense patterns have applications in community detection, network visualization and protein function prediction. However, k-cores can be quite unstable to network m odifications, which motivates the question: How resilient is the k-core structure of a network, such as the Web or Facebook, to edge deletions? We investigate this question from an algorithmic perspective. More specifically, we study the problem of computing a small set of edges for which the removal minimizes the $k$-core structure of a network. This paper provides a comprehensive characterization of the hardness of the k-core minimization problem (KCM), including innaproximability and fixed-parameter intractability. Motivated by such a challenge in terms of algorithm design, we propose a novel algorithm inspired by Shapley value -- a cooperative game-theoretic concept -- that is able to leverage the strong interdependencies in the effects of edge removals in the search space. As computing Shapley values is also NP-hard, we efficiently approximate them using a randomized algorithm with probabilistic guarantees. Our experiments, using several real datasets, show that the proposed algorithm outperforms competing solutions in terms of k-core minimization while being able to handle large graphs. Moreover, we illustrate how KCM can be applied in the analysis of the k-core resilience of networks.
This paper considers a game-theoretic formulation of the covert communications problem with finite blocklength, where the transmitter (Alice) can randomly vary her transmit power in different blocks, while the warden (Willie) can randomly vary his de tection threshold in different blocks. In this two player game, the payoff for Alice is a combination of the coding rate to the receiver (Bob) and the detection error probability at Willie, while the payoff for Willie is the negative of his detection error probability. Nash equilibrium solutions to the game are obtained, and shown to be efficiently computable using linear programming. For less covert requirements, our game-theoretic approach can achieve significantly higher coding rates than uniformly distributed transmit powers. We then consider the situation with an additional jammer, where Alice and the jammer can both vary their powers. We pose a two player game where Alice and the jammer jointly comprise one player, with Willie the other player. The use of a jammer is shown in numerical simulations to lead to further significant performance improvements.
In todays terrorism-prone and security-focused world, evacuation emergencies, drills, and false alarms are becoming more and more common. Compliance to an evacuation order made by an authority in case of emergency can play a key role in the outcome o f an emergency. In case an evacuee experiences repeated emergency scenarios which may be a false alarm (e.g., an evacuation drill, a false bomb threat, etc.) or an actual threat, the Aesops cry wolf effect (repeated false alarms decrease order compliance) can severely affect his/her likelihood to evacuate. To analyse this key unsolved issue of evacuation research, a game-theoretic approach is proposed. Game theory is used to explore mutual best responses of an evacuee and an authority. In the proposed model the authority obtains a signal of whether there is a threat or not and decides whether to order an evacuation or not. The evacuee, after receiving an evacuation order, subsequently decides whether to stay or leave based on posterior beliefs that have been updated in response to the authoritys action. Best-responses are derived and Sequential equilibrium and Perfect Bayesian Equilibrium are used as solution concepts (refining equilibria with the intuitive criterion). Model results highlight the benefits of announced evacuation drills and suggest that improving the accuracy of threat detection can prevent large inefficiencies associated with the cry wolf effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا