ترغب بنشر مسار تعليمي؟ اضغط هنا

The diverse lives of progenitors of hydrogen-rich core-collapse supernovae: the role of binary interaction

113   0   0.0 ( 0 )
 نشر من قبل Emmanouil Zapartas
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hydrogen-rich supernovae, known as Type II (SNe II), are the most common class of explosions observed following the collapse of the core of massive stars. We use analytical estimates and population synthesis simulations to assess the fraction of SNe II progenitors that are expected to have exchanged mass with a companion prior to explosion. We estimate that 1/3 to 1/2 of SN II progenitors have a history of mass exchange with a binary companion before exploding. The dominant binary channels leading to SN II progenitors involve the merger of binary stars. Mergers are expected to produce a diversity of SN II progenitor characteristics, depending on the evolutionary timing and properties of the merger. Alternatively, SN II progenitors from interacting binaries may have accreted mass from their companion, and subsequently been ejected from the binary system after their companion exploded. We show that the overall fraction of SN II progenitors that are predicted to have experienced binary interaction is robust against the main physical uncertainties in our models. However, the relative importance of different binary evolutionary channels is affected by changing physical assumptions. We further discuss ways in which binarity might contribute to the observed diversity of SNe II by considering potential observational signatures arising from each binary channel. For supernovae which have a substantial H-rich envelope at explosion (i.e., excluding Type IIb SNe), a surviving non-compact companion would typically indicate that the supernova progenitor star was in a wide, non-interacting binary. We argue that a significant fraction of even Type II-P SNe are expected to have gained mass from a companion prior to explosion.

قيم البحث

اقرأ أيضاً

322 - Iair Arcavi 2017
Hydrogen-rich core collapse supernovae, known as Type II supernovae, are the most common type of stellar explosion realized in nature. They are defined by the presence of prominent hydrogen lines in their spectra. Type II supernovae are observed only in star-forming galaxies, and several events have been directly linked to massive star progenitors. Five main subclasses are identified: Type IIP (displaying a plateau in their light curve), Type IIL (displaying a light curve decline), Type IIn (displaying narrow emission lines), Type IIb (displaying increasingly strong He features with time) and 87A-likes (displaying long-rising light curves similar to that of SN 1987A). Type IIP supernovae have been robustly established as the explosions of red supergiants, while the progenitors of Type IILs remain elusive. Type IIns are likely linked to luminous blue variables, Type IIb progenitors may be interacting binary systems and the prototype of the 87A-like class was observed to be the explosion of a blue supergiant. The diversity in progenitor mass, metallicity, binarity and rotation is likely responsible for the diversity in observed explosion types, but the connection between progenitor parameters and supernova properties is not yet entirely understood theoretically nor fully mapped observationally. New observational methods for constraining this connection are currently being implemented, including the analyses of large samples of events, making use of very early data (obtained hours to days from explosion) and statistical studies of host-galaxy properties.
146 - Stephen J. Smartt 2009
Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova has converged to 8 +/- 1 solar masses, from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc supernovae arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic supernovae are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above ~20 solar masses may collapse quietly to black-holes and that the explosions remain undetected. The recent discovery of a class of ultra-bright type II supernovae and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggests some very massive stars do produce highly energetic explosions. The physical mechanism is open to debate and these SNe pose a challenge to stellar evolutionary theory.
Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is tho ught to usually be accompanied by the ejection of the stars envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of failed supernovae, and our understanding of the core-collapse explosion mechanism.
Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of c ore-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, $15^{+9}_{-8}$%, of core-collapse supernovae are `late, that is, they occur 50-200 Myrs after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass ($4-8M_{odot}$). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by $14^{+15}_{-14}$% because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that $phi$ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.
99 - S. Davis , P.J. Pessi , M. Fraser 2021
We present a study of optical and near-infrared (NIR) spectra along with the light curves of SN 2013ai. These data range from discovery until 380 days after explosion. SN 2013ai is a fast declining type II supernova (SN II) with an unusually long ris e time; $18.9pm2.7$d in $V$ band and a bright $V$ band peak absolute magnitude of $-18.7pm0.06$ mag. The spectra are dominated by hydrogen features in the optical and NIR. The spectral features of SN 2013ai are unique in their expansion velocities, which when compared to large samples of SNe II are more than 1,000 kms faster at 50 days past explosion. In addition, the long rise time of the light curve more closely resembles SNe IIb rather than SNe II. If SN 2013ai is coeval with a nearby compact cluster we infer a progenitor ZAMS mass of $sim$17 M$_odot$. After performing light curve modeling we find that SN 2013ai could be the result of the explosion of a star with little hydrogen mass, a large amount of synthesized $^{56}$Ni, 0.3-0.4 M$_odot$, and an explosion energy of $2.5-3.0times10^{51}$ ergs. The density structure and expansion velocities of SN 2013ai are similar to that of the prototypical SN IIb, SN 1993J. However, SN 2013ai shows no strong helium features in the optical, likely due to the presence of a dense core that prevents the majority of $gamma$-rays from escaping to excite helium. Our analysis suggests that SN 2013ai could be a link between SNe II and stripped envelope SNe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا