ﻻ يوجد ملخص باللغة العربية
Hydrogen-rich core collapse supernovae, known as Type II supernovae, are the most common type of stellar explosion realized in nature. They are defined by the presence of prominent hydrogen lines in their spectra. Type II supernovae are observed only in star-forming galaxies, and several events have been directly linked to massive star progenitors. Five main subclasses are identified: Type IIP (displaying a plateau in their light curve), Type IIL (displaying a light curve decline), Type IIn (displaying narrow emission lines), Type IIb (displaying increasingly strong He features with time) and 87A-likes (displaying long-rising light curves similar to that of SN 1987A). Type IIP supernovae have been robustly established as the explosions of red supergiants, while the progenitors of Type IILs remain elusive. Type IIns are likely linked to luminous blue variables, Type IIb progenitors may be interacting binary systems and the prototype of the 87A-like class was observed to be the explosion of a blue supergiant. The diversity in progenitor mass, metallicity, binarity and rotation is likely responsible for the diversity in observed explosion types, but the connection between progenitor parameters and supernova properties is not yet entirely understood theoretically nor fully mapped observationally. New observational methods for constraining this connection are currently being implemented, including the analyses of large samples of events, making use of very early data (obtained hours to days from explosion) and statistical studies of host-galaxy properties.
We present a study of optical and near-infrared (NIR) spectra along with the light curves of SN 2013ai. These data range from discovery until 380 days after explosion. SN 2013ai is a fast declining type II supernova (SN II) with an unusually long ris
We present our study of OGLE-2014-SN-073, one of the brightest Type II SN ever discovered, with an unusually broad lightcurve combined with high ejecta velocities. From our hydrodynamical modelling we infer a remarkable ejecta mass of $60^{+42}_{-16}
We present SN 2020jfo, a Type IIP supernova in the nearby galaxy M61. Optical light curves from the Zwicky Transient Facility, complemented with data from Swift and near-IR photometry are presented. The 350-day duration bolometric light curve exhibit
Hydrogen-rich supernovae, known as Type II (SNe II), are the most common class of explosions observed following the collapse of the core of massive stars. We use analytical estimates and population synthesis simulations to assess the fraction of SNe
We investigate correlated gravitational wave and neutrino signals from rotating core-collapse supernovae with simulations. Using an improved mode identification procedure based on mode function matching, we show that a linear quadrupolar mode of the