ﻻ يوجد ملخص باللغة العربية
There has been much recent interest in studying anisotropies in the astrophysical gravitational-wave (GW) background, as these could provide us with interesting new information about galaxy clustering and large-scale structure. However, this information is obscured by shot noise, caused by the finite number of GW sources that contribute to the background at any given time. We develop a new method for estimating the angular spectrum of anisotropies, based on the principle of combining statistically-independent data segments. We show that this gives an unbiased estimate of the true, astrophysical spectrum, removing the offset due to shot noise power, and that in the limit of many data segments, it is the most efficient (i.e. lowest-variance) estimator possible.
We present the first predictions for the angular power spectrum of the astrophysical gravitational wave background constituted of the radiation emitted by all resolved and unresolved astrophysical sources. Its shape and amplitude depend on both the a
We calculate the noise induced in the anisotropies of the astrophysical gravitational-wave background by finite sampling of both the galaxy distribution and the compact binary coalescence event rate. This shot noise leads to a scale-invariant bias te
The spatial and temporal discreteness of gravitational wave sources leads to shot noise that may, in some regimes, swamp any attempts at measuring the anisotropy of the gravitational wave background. Cross-correlating a gravitational wave background
In the literature different approaches have been proposed to compute the anisotropies of the astrophysical gravitational wave background. The different expressions derived, although starting from our work Cusin, Pitrou, Uzan, Phys.Rev.D96, 103019 (20
We use population inference to explore the impact that uncertainties in the distribution of binary black holes (BBH) have on the astrophysical gravitational-wave background (AGWB). Our results show that the AGWB monopole is sensitive to the nature of