ترغب بنشر مسار تعليمي؟ اضغط هنا

A unified view of anisotropies in the astrophysical gravitational wave background

149   0   0.0 ( 0 )
 نشر من قبل Giulia Cusin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the literature different approaches have been proposed to compute the anisotropies of the astrophysical gravitational wave background. The different expressions derived, although starting from our work Cusin, Pitrou, Uzan, Phys.Rev.D96, 103019 (2017) [1], seem to differ. This article compares the various theoretical expressions proposed so far and provides a separate derivation based on a Boltzmann approach. We show that all the theoretical formula in the literature are equivalent and boil down to the one of Ref. [1] when a proper matching of terms and integration by parts are performed. The difference between the various predictions presented for anisotropies in a cosmological context can only lie in the astrophysical modeling of sources, and neither in the theory nor in the cosmological description of the large scale structures. Finally we comment on the gauge invariance of expressions.

قيم البحث

اقرأ أيضاً

We use population inference to explore the impact that uncertainties in the distribution of binary black holes (BBH) have on the astrophysical gravitational-wave background (AGWB). Our results show that the AGWB monopole is sensitive to the nature of the BBH population (particularly the local merger rate), while the anisotropic $C_ell$ spectrum is only modified to within a few percent, at a level which is insignificant compared to other sources of uncertainty (such as cosmic variance). This is very promising news for future observational studies of the AGWB, as it shows that (i) the monopole can be used as a new probe of the population of compact objects throughout cosmic history, complementary to direct observations by LIGO and Virgo and (ii) we are able to make surprisingly robust predictions for the $C_ell$ spectrum, even with only very approximate knowledge of the black hole population. As a result, the AGWB anisotropies have enormous potential as a new probe of the large-scale structure of the Universe, and of late-Universe cosmology in general.
We show that the anisotropies of the astrophysical stochastic gravitational wave background in the mHz band have a strong dependence on the modelling of galactic and sub-galactic physics. We explore a wide range of self-consistent astrophysical model s for stellar evolution and for the distribution of orbital parameters, all calibrated such that they predict the same number of resolved mergers to fit the number of detections during LIGO/Virgo O1+O2 observations runs. We show that different physical choices for the process of black hole collapse and cut-off in the black hole mass distribution give fractional differences in the angular power spectrum of anisotropies up to 50% on all angular scales. We also point out that the astrophysical information which can be extracted from anisotropies is complementary to the isotropic background and individual mergers. These results underline the interest in the anisotropies of the stochastic gravitational wave background as a new and potentially rich field of research, at the cross-road between astrophysics and cosmology.
We calculate the noise induced in the anisotropies of the astrophysical gravitational-wave background by finite sampling of both the galaxy distribution and the compact binary coalescence event rate. This shot noise leads to a scale-invariant bias te rm in the angular power spectrum $C_ell$, for which we derive a simple analytical expression. We find that this bias dominates over the true cosmological power spectrum in any reasonable observing scenario, and that only with very long observing times and removal of a large number of foreground sources can the true power spectrum be recovered.
We present the first predictions for the angular power spectrum of the astrophysical gravitational wave background constituted of the radiation emitted by all resolved and unresolved astrophysical sources. Its shape and amplitude depend on both the a strophysical properties on galactic scales and on cosmological properties. We show that the angular power spectrum behaves as $C_{ell}propto 1/{ell}$ on large scales and that relative fluctuations of the signal are of order 30% at 100 Hz. We also present the correlations of the astrophysical gravitational wave background with weak-lensing and galaxy distribution. These numerical results pave the way to the study of a new observable at the crossroad between general relativity, astrophysics and cosmology.
This article explores the properties (amplitude and shape) of the angular power spectrum of the anisotropies of the astrophysical gravitational wave background (AGWB) focusing on the signatures of the astrophysical models describing sub-galactic phys ics. It demonstrates that while some parameters have negligible impact others, and in particular the stellar evolution models, the metallicity and the merger time delay distribution can result in relative differences of order 40% in the angular power spectrum of anisotropies in both the LIGO/Virgo and LISA frequency bands. It is also shown that the monopole and the anisotropic components of the AGWB are complementary and sensitive to different astrophysical parameters. It follows that AGWB anisotropies are a new observable with the potential to provide new astrophysical information that can not be accessed otherwise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا