ﻻ يوجد ملخص باللغة العربية
Levitated nano-oscillators are seen as promising platforms for testing fundamental physics and testing quantum mechanics in a new high mass regime. Levitation allows extreme isolation from the environment, reducing the decoherence processes that are crucial for these sensitive experiments. A fundamental property of any oscillator is its line width and mechanical quality factor, Q. Narrow line widths in the microHertz regime and mechanical Qs as high as $10^{12}$ have been predicted for levitated systems, but to date, the poor stability of these oscillators over long periods have prevented direct measurement in high vacuum. Here we report on the measurement of an ultra-narrow line width levitated nano-oscillator, whose line width of $81pm,23,mu$Hz is only limited by residual gas pressure at high vacuum. This narrow line width allows us to put new experimental bounds on dissipative models of wavefunction collapse including continuous spontaneous localisation and Di{o}si-Penrose and illustrates its utility for future precision experiments that aim to test the macroscopic limits of quantum mechanics.
We describe the construction and characterisation of a nano-oscillator formed by a Paul trap. The frequency and temperature stability of the nano-oscillator was measured over several days allowing us to identify the major sources of trap and environm
We show how the interference between spatially separated states of the center of mass (COM) of a mesoscopic harmonic oscillator can be evidenced by coupling it to a spin and performing solely spin manipulations and measurements (Ramsey Interferometry
In this comment, we agree with the formulas derived in Refs. [1,2] but show that the results are not due to interference between spatially separated states of the center of mass of a mesoscopic harmonic oscillator.
A general study of pentaquarks built with four quarks in a L=1 state and an antiquark in S-wave shows that several of such states are forbidden by a selection rule, which holds in the limit of flavour symmetry, to decay into a baryon and a meson fina
There has been a recent surge of interest and progress in creating subwavelength free-space optical potentials for ultra-cold atoms. A key open question is whether geometric potentials, which are repulsive and ubiquitous in the creation of subwavelen