ترغب بنشر مسار تعليمي؟ اضغط هنا

An ultra-narrow line width levitated nano-oscillator for testing dissipative wavefunction collapse

91   0   0.0 ( 0 )
 نشر من قبل Antonio Pontin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Levitated nano-oscillators are seen as promising platforms for testing fundamental physics and testing quantum mechanics in a new high mass regime. Levitation allows extreme isolation from the environment, reducing the decoherence processes that are crucial for these sensitive experiments. A fundamental property of any oscillator is its line width and mechanical quality factor, Q. Narrow line widths in the microHertz regime and mechanical Qs as high as $10^{12}$ have been predicted for levitated systems, but to date, the poor stability of these oscillators over long periods have prevented direct measurement in high vacuum. Here we report on the measurement of an ultra-narrow line width levitated nano-oscillator, whose line width of $81pm,23,mu$Hz is only limited by residual gas pressure at high vacuum. This narrow line width allows us to put new experimental bounds on dissipative models of wavefunction collapse including continuous spontaneous localisation and Di{o}si-Penrose and illustrates its utility for future precision experiments that aim to test the macroscopic limits of quantum mechanics.

قيم البحث

اقرأ أيضاً

We describe the construction and characterisation of a nano-oscillator formed by a Paul trap. The frequency and temperature stability of the nano-oscillator was measured over several days allowing us to identify the major sources of trap and environm ental fluctuations. We measure an overall frequency stability of 2 ppm/hr and a temperature stability of more than 5 hours via the Allan deviation. Importantly, we find that the charge on the nanoscillator is stable over a timescale of at least two weeks and that the mass of the oscillator, can be measured with a 3 % uncertainty. This allows us to distinguish between the trapping of a single nanosphere and a nano-dumbbell formed by a cluster of two nanospheres.
We show how the interference between spatially separated states of the center of mass (COM) of a mesoscopic harmonic oscillator can be evidenced by coupling it to a spin and performing solely spin manipulations and measurements (Ramsey Interferometry ). We propose to use an optically levitated diamond bead containing an NV center spin. The nano-scale size of the bead makes the motional decoherence due to levitation negligible. The form of the spin-motion coupling ensures that the scheme works for thermal states so that moderate feedback cooling suffices. No separate control or observation of the COM state is required and thereby one dispenses with cavities, spatially resolved detection and low mass-dispersion ensembles. The controllable relative phase in the Ramsey interferometry stems from a gravitational potential difference so that it uniquely evidences coherence between states which involve the whole nano-crystal being in spatially distinct locations.
122 - F. Robicheaux 2016
In this comment, we agree with the formulas derived in Refs. [1,2] but show that the results are not due to interference between spatially separated states of the center of mass of a mesoscopic harmonic oscillator.
87 - F. Buccella , P. Sorba 2004
A general study of pentaquarks built with four quarks in a L=1 state and an antiquark in S-wave shows that several of such states are forbidden by a selection rule, which holds in the limit of flavour symmetry, to decay into a baryon and a meson fina l state. We identify the most promising bar{10} multiplet for the classification of the Theta^+ and Xi^{--} particles recently discovered with the prediction of a narrow width for both of them.
There has been a recent surge of interest and progress in creating subwavelength free-space optical potentials for ultra-cold atoms. A key open question is whether geometric potentials, which are repulsive and ubiquitous in the creation of subwavelen gth free-space potentials, forbid the creation of narrow traps with long lifetimes. Here, we show that it is possible to create such traps. We propose two schemes for realizing subwavelength traps and demonstrate their superiority over existing proposals. We analyze the lifetime of atoms in such traps and show that long-lived bound states are possible. This work opens a new frontier for the subwavelength control and manipulation of ultracold matter, with applications in quantum chemistry and quantum simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا