ﻻ يوجد ملخص باللغة العربية
Program obfuscation is an important software protection technique that prevents attackers from revealing the programming logic and design of the software. We introduce translingual obfuscation, a new software obfuscation scheme which makes programs obscure by misusing the unique features of certain programming languages. Translingual obfuscation translates part of a program from its original language to another language which has a different programming paradigm and execution model, thus increasing program complexity and impeding reverse engineering. In this paper, we investigate the feasibility and effectiveness of translingual obfuscation with Prolog, a logic programming language. We implement translingual obfuscation in a tool called BABEL, which can selectively translate C functions into Prolog predicates. By leveraging two important features of the Prolog language, i.e., unification and backtracking, BABEL obfuscates both the data layout and control flow of C programs, making them much more difficult to reverse engineer. Our experiments show that BABEL provides effective and stealthy software obfuscation, while the cost is only modest compared to one of the most popular commercial obfuscators on the market. With BABEL, we verified the feasibility of translingual obfuscation, which we consider to be a promising new direction for software obfuscation.
An obfuscator is an algorithm that translates circuits into functionally-equivalent similarly-sized circuits that are hard to understand. Efficient obfuscators would have many applications in cryptography. Until recently, theoretical progress has mai
We introduce a general model for the local obfuscation of probability distributions by probabilistic perturbation, e.g., by adding differentially private noise, and investigate its theoretical properties. Specifically, we relax a notion of distributi
The problem of obfuscating the authorship of a text document has received little attention in the literature to date. Current approaches are ad-hoc and rely on assumptions about an adversarys auxiliary knowledge which makes it difficult to reason abo
The increasing use of cloud computing and remote execution have made program security especially important. Code obfuscation has been proposed to make the understanding of programs more complicated to attackers. In this paper, we exploit multi-core p
We introduce a formal model for the information leakage of probability distributions and define a notion called distribution privacy as the local differential privacy for probability distributions. Roughly, the distribution privacy of a local obfusca