ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetric nuclear matter from the strong interaction

461   0   0.0 ( 0 )
 نشر من قبل Jens Braun
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the equation of state of symmetric nuclear matter at zero temperature over a wide range of densities using two complementary theoretical approaches. At low densities up to twice nuclear saturation density, we compute the energy per particle based on modern nucleon-nucleon and three-nucleon interactions derived within chiral effective field theory. For higher densities we derive for the first time constraints in a Fierz-complete setting directly based on quantum chromodynamics using functional renormalization group techniques. We find remarkable consistency of the results obtained from both approaches as they come together in density and the natural emergence of a maximum in the speed of sound $c_S$ at supranuclear densities with a value beyond the asymptotic $c_S^2 = 1/3$. The presence of a maximum appears tightly connected to the formation of a diquark gap.

قيم البحث

اقرأ أيضاً

169 - B.Krippa 1999
The effective field theory of NN interactions in nuclear matter is considered. Due to the Pauli principle the effective NN amplitude is not affected by the shallow bound states. We show that the next-to-leading order terms in the chiral expansion of the effective NN potential can be interpreted as corrections so the expansion is systematic. The value of potential energy per particle is calculated and some issues concerning the chiral effective theory of nuclear matter are outlined.
129 - M. Baldo , C. Maieron 2005
We study the possible relationship between the saturation properties of nuclear matter and the inclusion of non-locality in the nucleon-nucleon interaction. To this purpose we compute the saturation curve of nuclear matter within the Bethe-Brueckner- Goldstone theory using a recently proposed realistic non-local potential, and compare it with the corresponding curves obtained with a purely local realistic interaction (Argonne v$_{18}$) and the most recent version of the one-boson exchange potential (CD Bonn). We find that the inclusion of non-locality in the two-nucleon bare interaction strongly affects saturation, but it is unable to provide a consistent description of few-body nuclear systems and nuclear matter.
The strong nuclear interaction between nucleons (protons and neutrons) is the effective force that holds the atomic nucleus together. This force stems from fundamental interactions between quarks and gluons (the constituents of nucleons) that are des cribed by the equations of Quantum Chromodynamics (QCD). However, as these equations cannot be solved directly, physicists resort to describing nuclear interactions using effective models that are well constrained at typical inter-nucleon distances in nuclei but not at shorter distances. This limits our ability to describe high-density nuclear matter such as in the cores of neutron stars. Here we use high-energy electron scattering measurements that isolate nucleon pairs in short-distance, high-momentum configurations thereby accessing a kinematical regime that has not been previously explored by experiments, corresponding to relative momenta above 400 MeV/c. As the relative momentum between two nucleons increases and their separation thereby decreases, we observe a transition from a spin-dependent tensor-force to a predominantly spin-independent scalar-force. These results demonstrate the power of using such measurements to study the nuclear interaction at short-distances and also support the use of point-like nucleons with two- and three-body effective interactions to describe nuclear systems up to densities several times higher than the central density of atomic nuclei.
The effect of in-medium dinucleon bound states on self-consistent single-particle fields in Brueckner, Bethe and Goldstone theory is investigated in symmetric nuclear matter at zero temperature. To this end, dinucleon bound state occurences in the $^ 1S_0$ and ${}^3SD_1$ channels are explicitly accounted for -within the continuous choice for the auxiliary fields- while imposing self-consistency in Brueckner-Hartree-Fock approximation calculations. Searches are carried out at Fermi momenta in the range $0<k_Fleq1.75$~fm$^{-1}$, using the Argonne $v_{18}$ bare nucleon-nucleon potential without resorting to the effective mass approximation. As a result, two distinct solutions meeting the self-consistency requirement are found with overlapping domains in the interval $0.130;textrm{fm}^{-1} leq k_F leq 0.285;textrm{fm}^{-1}$, corresponding to mass densities between $10^{11.4}$ and $10^{12.4}$ g cm$^{-3}$. Effective masses as high as three times the nucleon mass are found in the coexistence domain. The emergence of superfluidity in relationship with BCS pairing gap solutions is discussed.
We present calculations for symmetric nuclear matter using chiral nuclear interactions within the Self-Consistent Greens Functions approach in the ladder approximation. Three-body forces are included via effective one-body and two-body interactions, computed from an uncorrelated average over a third particle. We discuss the effect of the three-body forces on the total energy, computed with an extended Galitskii-Migdal-Koltun sum-rule, as well as on single-particle properties. Saturation properties are substantially improved when three-body forces are included, but there is still some underlying dependence on the SRG evolution scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا