ﻻ يوجد ملخص باللغة العربية
The effect of in-medium dinucleon bound states on self-consistent single-particle fields in Brueckner, Bethe and Goldstone theory is investigated in symmetric nuclear matter at zero temperature. To this end, dinucleon bound state occurences in the $^1S_0$ and ${}^3SD_1$ channels are explicitly accounted for -within the continuous choice for the auxiliary fields- while imposing self-consistency in Brueckner-Hartree-Fock approximation calculations. Searches are carried out at Fermi momenta in the range $0<k_Fleq1.75$~fm$^{-1}$, using the Argonne $v_{18}$ bare nucleon-nucleon potential without resorting to the effective mass approximation. As a result, two distinct solutions meeting the self-consistency requirement are found with overlapping domains in the interval $0.130;textrm{fm}^{-1} leq k_F leq 0.285;textrm{fm}^{-1}$, corresponding to mass densities between $10^{11.4}$ and $10^{12.4}$ g cm$^{-3}$. Effective masses as high as three times the nucleon mass are found in the coexistence domain. The emergence of superfluidity in relationship with BCS pairing gap solutions is discussed.
We study the equation of state of symmetric nuclear matter at zero temperature over a wide range of densities using two complementary theoretical approaches. At low densities up to twice nuclear saturation density, we compute the energy per particle
We study the equation of state for symmetric nuclear matter using a ring-diagram approach in which the particle-particle hole-hole ($pphh$) ring diagrams within a momentum model space of decimation scale $Lambda$ are summed to all orders. The calcula
The phase diagram of isospin-asymmetrical nuclear matter may feature a number of unconventional phases, which include the translationally and rotationally symmetric, but isospin-asymmetrical BCS condensate, the current-carrying Larkin-Ovchinnikov-Ful
Changes in the meson-nucleon coupling constant and the vertex form factor in nuclear matter are studied in a modified Skyrme Lagrangian including the sigma-meson field that satisfies the scale invariance. Renormalization of the axial-vector coupling
Yields of equatorially emitted light isotopes, $1le Zle 14$, observed in ternary fission in the reaction $^{241}$Pu($n_{rm th}$,f) are employed to determine apparent chemical equilibrium constants for low-temperature and low-density nuclear matter. T