ترغب بنشر مسار تعليمي؟ اضغط هنا

Gated-SCNN: Gated Shape CNNs for Semantic Segmentation

108   0   0.0 ( 0 )
 نشر من قبل Towaki Takikawa
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Current state-of-the-art methods for image segmentation form a dense image representation where the color, shape and texture information are all processed together inside a deep CNN. This however may not be ideal as they contain very different type of information relevant for recognition. Here, we propose a new two-stream CNN architecture for semantic segmentation that explicitly wires shape information as a separate processing branch, i.e. shape stream, that processes information in parallel to the classical stream. Key to this architecture is a new type of gates that connect the intermediate layers of the two streams. Specifically, we use the higher-level activations in the classical stream to gate the lower-level activations in the shape stream, effectively removing noise and helping the shape stream to only focus on processing the relevant boundary-related information. This enables us to use a very shallow architecture for the shape stream that operates on the image-level resolution. Our experiments show that this leads to a highly effective architecture that produces sharper predictions around object boundaries and significantly boosts performance on thinner and smaller objects. Our method achieves state-of-the-art performance on the Cityscapes benchmark, in terms of both mask (mIoU) and boundary (F-score) quality, improving by 2% and 4% over strong baselines.

قيم البحث

اقرأ أيضاً

In this paper, we focus on a less explored, but more realistic and complex problem of domain adaptation in LiDAR semantic segmentation. There is a significant drop in performance of an existing segmentation model when training (source domain) and tes ting (target domain) data originate from different LiDAR sensors. To overcome this shortcoming, we propose an unsupervised domain adaptation framework that leverages unlabeled target domain data for self-supervision, coupled with an unpaired mask transfer strategy to mitigate the impact of domain shifts. Furthermore, we introduce gated adapter modules with a small number of parameters into the network to account for target domain-specific information. Experiments adapting from both real-to-real and synthetic-to-real LiDAR semantic segmentation benchmarks demonstrate the significant improvement over prior arts.
Training convolutional networks for semantic segmentation with strong (per-pixel) and weak (per-bounding-box) supervision requires a large amount of weakly labeled data. We propose two methods for selecting the most relevant data with weak supervisio n. The first method is designed for finding visually similar images without the need of labels and is based on modeling image representations with a Gaussian Mixture Model (GMM). As a byproduct of GMM modeling, we present useful insights on characterizing the data generating distribution. The second method aims at finding images with high object diversity and requires only the bounding box labels. Both methods are developed in the context of automated driving and experimentation is conducted on Cityscapes and Open Images datasets. We demonstrate performance gains by reducing the amount of employed weakly labeled images up to 100 times for Open Images and up to 20 times for Cityscapes.
Over the past decade, Deep Convolutional Neural Networks have been widely adopted for medical image segmentation and shown to achieve adequate performance. However, due to the inherent inductive biases present in the convolutional architectures, they lack understanding of long-range dependencies in the image. Recently proposed Transformer-based architectures that leverage self-attention mechanism encode long-range dependencies and learn representations that are highly expressive. This motivates us to explore Transformer-based solutions and study the feasibility of using Transformer-based network architectures for medical image segmentation tasks. Majority of existing Transformer-based network architectures proposed for vision applications require large-scale datasets to train properly. However, compared to the datasets for vision applications, for medical imaging the number of data samples is relatively low, making it difficult to efficiently train transformers for medical applications. To this end, we propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module. Furthermore, to train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance. Specifically, we operate on the whole image and patches to learn global and local features, respectively. The proposed Medical Transformer (MedT) is evaluated on three different medical image segmentation datasets and it is shown that it achieves better performance than the convolutional and other related transformer-based architectures. Code: https://github.com/jeya-maria-jose/Medical-Transformer
Style transfer describes the rendering of an image semantic content as different artistic styles. Recently, generative adversarial networks (GANs) have emerged as an effective approach in style transfer by adversarially training the generator to synt hesize convincing counterfeits. However, traditional GAN suffers from the mode collapse issue, resulting in unstable training and making style transfer quality difficult to guarantee. In addition, the GAN generator is only compatible with one style, so a series of GANs must be trained to provide users with choices to transfer more than one kind of style. In this paper, we focus on tackling these challenges and limitations to improve style transfer. We propose adversarial gated networks (Gated GAN) to transfer multiple styles in a single model. The generative networks have three modules: an encoder, a gated transformer, and a decoder. Different styles can be achieved by passing input images through different branches of the gated transformer. To stabilize training, the encoder and decoder are combined as an autoencoder to reconstruct the input images. The discriminative networks are used to distinguish whether the input image is a stylized or genuine image. An auxiliary classifier is used to recognize the style categories of transferred images, thereby helping the generative networks generate images in multiple styles. In addition, Gated GAN makes it possible to explore a new style by investigating styles learned from artists or genres. Our extensive experiments demonstrate the stability and effectiveness of the proposed model for multistyle transfer.
Abnormality detection is a challenging task due to the dependence on a specific context and the unconstrained variability of practical scenarios. In recent years, it has benefited from the powerful features learnt by deep neural networks, and handcra fted features specialized for abnormality detectors. However, these approaches with large complexity still have limitations in handling long term sequential data (e.g., videos), and their learnt features do not thoroughly capture useful information. Recurrent Neural Networks (RNNs) have been shown to be capable of robustly dealing with temporal data in long term sequences. In this paper, we propose a novel version of Gated Recurrent Unit (GRU), called Single Tunnelled GRU for abnormality detection. Particularly, the Single Tunnelled GRU discards the heavy weighted reset gate from GRU cells that overlooks the importance of past content by only favouring current input to obtain an optimized single gated cell model. Moreover, we substitute the hyperbolic tangent activation in standard GRUs with sigmoid activation, as the former suffers from performance loss in deeper networks. Empirical results show that our proposed optimized GRU model outperforms standard GRU and Long Short Term Memory (LSTM) networks on most metrics for detection and generalization tasks on CUHK Avenue and UCSD datasets. The model is also computationally efficient with reduced training and testing time over standard RNNs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا