ترغب بنشر مسار تعليمي؟ اضغط هنا

Do the planets in the HD 34445 system really exist?

72   0   0.0 ( 0 )
 نشر من قبل Nikolaos Georgakarakos Ph.D.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 2010 the first planet was discovered around star HD 34445. Recently, another five planets were announced orbiting the same star. It is a rather dense multi-planet system with some of its planets having separations of fractions of an au and minimum masses ranging from Neptune to sub-Jupiter ones. Given the number of planets and the various uncertainties in their masses and orbital elements, the HD 34445 planetary system is quite interesting as there is the potential for mean motion and secular resonances that could render the outcome of its dynamical evolution and fate an open question. In this paper we investigate the dynamical stability of the six planet system in order to check the validity of the orbital solution acquired. This is achieved by a series of numerical experiments, where the dynamical evolution of the system is tested on different timescales. We vary the orbital elements and masses of the system within the error ranges provided. We find that for a large area of the parameter space we can produce stable configurations and therefore conclude it is very likely that the HD 34445 planetary system is real. Some discussion about the potential habitability of the system is also done.

قيم البحث

اقرأ أيضاً

The presented work investigates the possible formation of terrestrial planets in the habitable zone (HZ) of the exoplanetary system HD 141399. In this system the HZ is located approximately between the planets c (a = 0.7 au) and d (a = 2.1 au). Exten sive numerical integrations of the equations of motion in the pure Newtonian framework of small bodies with different initial conditions in the HZ are performed. Our investigations included several steps starting with 500 massless bodies distributed between planets c and d in order to model the development of the disk of small bodies. It turns out that after some 10^6 years a belt-like structure analogue to the main belt inside Jupiter in our Solar System appears. We then proceed with giving the small bodies masses (Moon-mass) and take into account the gravitational interaction between these planetesimal-like objects. The growing of the objects - with certain percentage of water - due to collisions is computed in order to look for the formation of terrestrial planets. We observe that planets form in regions connected to mean motion resonances (MMR). So far there is no observational evidence of terrestrial planets in the system of HD 141399 but from our results we can conclude that the formation of terrestrial planets - even with an appropriate amount of water necessary for being habitable - in the HZ would have been possible.
HD 38206 is an A0V star in the Columba association, hosting a debris disc first discovered by IRAS. Further observations by Spitzer and Herschel showed that the disc has two components, likely analogous to the asteroid and Kuiper belts of the Solar S ystem. The young age of this star makes it a prime target for direct imaging planet searches. Possible planets in the system can be constrained using the debris disc. Here we present the first ALMA observations of the systems Kuiper belt and fit them using a forward modelling MCMC approach. We detect an extended disc of dust peaking at around 180 au with a width of 140 au. The disc is close to edge on and shows tentative signs of an asymmetry best fit by an eccentricity of $0.25^{+0.10}_{-0.09}$. We use the fitted parameters to determine limits on the masses of planets interior to the cold belt. We determine that a minimum of four planets are required, each with a minimum mass of 0.64 M$_J$, in order to clear the gap between the asteroid and Kuiper belts of the system. If we make the assumption that the outermost planet is responsible for the stirring of the disc, the location of its inner edge and the eccentricity of the disc, then we can more tightly predict its eccentricity, mass and semimajor axis to be $e_{rm{p}}=0.34^{+0.20}_{-0.13}$, $m_{rm{p}}=0.7^{+0.5}_{-0.3},rm{M}_{rm{J}}$ and $a_{rm{p}}=76^{+12}_{-13},rm{au}$.
361 - Ignazio Bombaci 2000
Definitely, an affirmative answer to this question would have implications of fundamental importance for astrophysics (a new class of compact stars), and for the physics of strong interactions (deconfined phase of quark matter, and strange matter hyp othesis). In the present work, we use observational data for the newly discovered millisecond X-ray pulsar SAX J1808.4-3658 and for the atoll source 4U 1728-34 to constrain the radius of the underlying compact stars. Comparing the mass-radius relation of these two compact stars with theoretical models for both neutron stars and strange stars, we argue that a strange star model is more consistent with SAX J1808.4-3658 and 4U 1728-34, and suggest that they are likely strange star candidates.
Initially designed to discover short-period planets, the N2K campaign has since evolved to discover new worlds at large separations from their host stars. Detecting such worlds will help determine the giant planet occurrence at semi-major axes beyond the ice line, where gas giants are thought to mostly form. Here we report four newly-discovered gas giant planets (with minimum masses ranging from 0.4 to 2.1 MJup) orbiting stars monitored as part of the N2K program. Two of these planets orbit stars already known to host planets: HD 5319 and HD 11506. The remaining discoveries reside in previously-unknown planetary systems: HD 10442 and HD 75784. The refined orbital period of the inner planet orbiting HD 5319 is 641 days. The newly-discovered outer planet orbits in 886 days. The large masses combined with the proximity to a 4:3 mean motion resonance make this system a challenge to explain with current formation and migration theories. HD 11506 has one confirmed planet, and here we confirm a second. The outer planet has an orbital period of 1627.5 days, and the newly-discovered inner planet orbits in 223.6 days. A planet has also been discovered orbiting HD 75784 with an orbital period of 341.7 days. There is evidence for a longer period signal; however, several more years of observations are needed to put tight constraints on the Keplerian parameters for the outer planet. Lastly, an additional planet has been detected orbiting HD 10442 with a period of 1043 days.
We report the discovery of four super-Earth planets around HD 215152, with orbital periods of 5.76, 7.28, 10.86, and 25.2 d, and minimum masses of 1.8, 1.7, 2.8, and 2.9 M_Earth respectively. This discovery is based on 373 high-quality radial velocit y measurements taken by HARPS over 13 years. Given the low masses of the planets, the signal-to-noise ratio is not sufficient to constrain the planet eccentricities. However, a preliminary dynamical analysis suggests that eccentricities should be typically lower than about 0.03 for the system to remain stable. With two pairs of planets with a period ratio lower than 1.5, with short orbital periods, low masses, and low eccentricities, HD 215152 is similar to the very compact multi-planet systems found by Kepler, which is very rare in radial-velocity surveys. This discovery proves that these systems can be reached with the radial-velocity technique, but characterizing them requires a huge amount of observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا