ﻻ يوجد ملخص باللغة العربية
After the first measurement of the coherent elastic neutrino nucleus scattering (CENNS) by the COHERENT Collaboration, it is expected that new experiments will confirm the observation. Such measurements will allow to put stronger constraints or discover new physics as well as to probe the Standard Model by measuring its parameters. This is the case of the weak mixing angle at low energies, which could be measured with an increased precision in future results of CENNS experiments using, for example, reactor antineutrinos. In this work we analyze the physics potential of different proposals for the improvement of our current knowledge of this observable and show that they are very promising.
In several extensions of the Standard Model of Particle Physics (SMPP), the neutrinos acquire electromagnetic properties such as the electric millicharge. Theoretical and experimental bounds have been reported in the literature for this parameter. In
We study the sensitivity of detectors with directional sensitivity to coherent elastic neutrino-nucleus scattering (CE$ u$NS), and how these detectors complement measurements of the nuclear recoil energy. We consider stopped pion and reactor neutrino
The presence of new neutrino-quark interactions can enhance, deplete or distort the coherent elastic neutrino-nucleus scattering (CEvNS) event rate. The new interactions may involve CP violating phases that can potentially affect these features. Assu
We calculate coherent elastic neutrino-nucleus scattering cross sections on spin-0 nuclei (e.g. $^{40}$Ar and $^{28}$Si) at energies below 100 MeV within the Standard Model and account for all effects of permille size. We provide a complete error bud
We report the first measurement of coherent elastic neutrino-nucleus scattering (cevns) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer cevns over the background-o