ﻻ يوجد ملخص باللغة العربية
In this paper, we propose Efficient Progressive Neural Architecture Search (EPNAS), a neural architecture search (NAS) that efficiently handles large search space through a novel progressive search policy with performance prediction based on REINFORCE~cite{Williams.1992.PG}. EPNAS is designed to search target networks in parallel, which is more scalable on parallel systems such as GPU/TPU clusters. More importantly, EPNAS can be generalized to architecture search with multiple resource constraints, eg, model size, compute complexity or intensity, which is crucial for deployment in widespread platforms such as mobile and cloud. We compare EPNAS against other state-of-the-art (SoTA) network architectures (eg, MobileNetV2~cite{mobilenetv2}) and efficient NAS algorithms (eg, ENAS~cite{pham2018efficient}, and PNAS~cite{Liu2017b}) on image recognition tasks using CIFAR10 and ImageNet. On both datasets, EPNAS is superior wrt architecture searching speed and recognition accuracy.
We propose a new method for learning the structure of convolutional neural networks (CNNs) that is more efficient than recent state-of-the-art methods based on reinforcement learning and evolutionary algorithms. Our approach uses a sequential model-b
One-Shot Neural architecture search (NAS) attracts broad attention recently due to its capacity to reduce the computational hours through weight sharing. However, extensive experiments on several recent works show that there is no positive correlatio
Recent advances in adversarial attacks show the vulnerability of deep neural networks searched by Neural Architecture Search (NAS). Although NAS methods can find network architectures with the state-of-the-art performance, the adversarial robustness
Neural architecture search (NAS) has been proposed to automatically tune deep neural networks, but existing search algorithms, e.g., NASNet, PNAS, usually suffer from expensive computational cost. Network morphism, which keeps the functionality of a
Many recently proposed methods for Neural Architecture Search (NAS) can be formulated as bilevel optimization. For efficient implementation, its solution requires approximations of second-order methods. In this paper, we demonstrate that gradient err