ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrated on chip platform with quantum emitters in layered materials

91   0   0.0 ( 0 )
 نشر من قبل Sejeong Kim Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Integrated quantum photonic circuitry is an emerging topic that requires efficient coupling of quantum light sources to waveguides and optical resonators. So far, great effort has been devoted to engineering on-chip systems from three-dimensional crystals such as diamond or gallium arsenide. In this study, we demonstrate room temperature coupling of quantum emitters embedded within a layered hexagonal boron nitride to an on-chip aluminium nitride waveguide. We achieved 1.2% light coupling efficiency of the device and realise transmission of single photons through the waveguide. Our results serve as a foundation for the integration of layered materials with on-chip components and for the realisation of integrated quantum photonic circuitry.

قيم البحث

اقرأ أيضاً

Generating entangled graph states of qubits requires high entanglement rates, with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon col lection efficiency, however, typically at the cost of a reduced defect emission energy homogeneity. Here, we demonstrate that the reduction in defect homogeneity in an integrated device can be partially offset by electric field tuning. Using photonic device-coupled implanted nitrogen vacancy (NV) centers in a GaP-on-diamond platform, we demonstrate large field-dependent tuning ranges and partial stabilization of defect emission energies. These results address some of the challenges of chip-scale entanglement generation.
One important building block for future integrated nanophotonic devices is the scalable on-chip interfacing of single photon emitters and quantum memories with single optical modes. Here we present the deterministic integration of a single solid-stat e qubit, the nitrogen-vacancy (NV) center, with a photonic platform consisting exclusively of SiO$_2$ grown thermally on a Si substrate. The platform stands out by its ultra-low fluorescence and the ability to produce various passive structures such as high-Q microresonators and mode-size converters. By numerical analysis an optimal structure for the efficient coupling of a dipole emitter to the guided mode could be determined. Experimentally, the integration of a preselected NV emitter was performed with an atomic force microscope and the on-chip excitation of the quantum emitter as well as the coupling of single photons to the guided mode of the integrated structure could be demonstrated. Our approach shows the potential of this platform as a robust nanoscale interface of on-chip photonic structures with solid-state qubits.
76 - Mario Schwartz 2018
Photonic quantum technologies such as quantum cryptography, photonic quantum metrology, photonic quantum simulators and computers will largely benefit from highly scalable and small footprint quantum photonic circuits. To perform fully on-chip quantu m photonic operations, three basic building blocks are required: single-photon sources, photonic circuits and single-photon detectors. Highly integrated quantum photonic chips on silicon and related platforms have been demonstrated incorporating only one or two of these basic building blocks. Previous implementations of all three components were mainly limited by laser stray light, making temporal filtering necessary or required complex manipulation to transfer all components onto one chip. So far, a monolithic, simultaneous implementation of all elements demonstrating single-photon operation remains elusive. Here, we present a fully-integrated Hanbury-Brown and Twiss setup on a micron-sized footprint, consisting of a GaAs waveguide embedding quantum dots as single-photon sources, a waveguide beamsplitter and two superconducting nanowire single-photon detectors. This enables a second-order correlation measurement at the single-photon level under both continuous-wave and pulsed resonant excitation.
Realization of integrated photonic circuits on a single chip requires controlled manipulation and integration of solid-state quantum emitters with nanophotonic components. Previous works focused on emitters embedded in a three-dimensional crystals -- such as nanodiamonds or quantum dots. In contrast, in this work we demonstrate coupling of a single emitter in a two-dimensional (2D) material, namely hexagonal boron nitride (hBN), with a tapered optical fiber and find a collection efficiency of the system is found to be 10~%. Furthermore, due to the single dipole character of the emitter, we were able to analyse the angular emission pattern of the coupled system via back focal plane imaging. The good coupling efficiency to the tapered fiber even allows excitation and detection in a fully fiber coupled way yielding a true integrated system. Our results provide evidence of the feasibility to efficiently integrate quantum emitters in 2D materials with photonic structures.
Friction is a ubiquitous phenomenon that greatly affects our everyday lives and is responsible for large amounts of energy loss in industrialised societies. Layered materials such as graphene have interesting frictional properties and are often used as (additives to) lubricants to reduce friction and protect against wear. Experimental Atomic Force Microscopy studies and detailed simulations have shown a number of intriguing effects such as friction strengthening and dependence of friction on the number of layers covering a surface. Here, we propose a simple, fundamental, model for friction on thin sheets. We use our model to explain a variety of seemingly contradictory experimental as well as numerical results. This model can serve as a basis for understanding friction on thin sheets, and opens up new possibilities for ultimately controlling their friction and wear protection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا