ﻻ يوجد ملخص باللغة العربية
In this work we focus on substantial fractional integral and differential operators which play an important role in modeling anomalous diffusion. We introduce a new generalized substantial fractional integral. Generalizations of fractional substantial derivatives are also introduced both in Riemann-Liouville and Caputo sense. Furthermore, we analyze fundamental properties of these operators. Finally, we consider a class of generalized substantial fractional differential equations and discuss the existence, uniqueness and continuous dependence of solutions on initial data.
This paper mainly investigates the Cauchy problem of the spatially weighted dissipative equation with initial data in the weighted Lebesgue space. A generalized Hankel Transform is introduced to derive the analytical solution and a special Youngs Ine
The relationship between the operator norms of fractional integral operators acting on weighted Lebesgue spaces and the constant of the weights is investigated. Sharp boundsare obtained for both the fractional integral operators and the associated fr
In this paper we explore the theory of fractional powers of non-negative (and not necessarily self-adjoint) operators and its amazing relationship with the Chebyshev polynomials of the second kind to obtain results of existence, regularity and behavi
The aim of this paper is to establish the $H^1$ global well-posedness for Kirchhoff systems. The new approach to the construction of solutions is based on the asymptotic integrations for strictly hyperbolic systems with time-dependent coefficients. T
We establish partial semigroup property of Riemann-Liouville and Caputo fractional differential operators. Using this result we prove theorems on reduction of multi-term fractional differential systems to single-term and multi-order systems, and prov