ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological superconductivity from transverse optical phonons in oxide heterostructures

67   0   0.0 ( 0 )
 نشر من قبل Minseong Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A topological superconductor features at its boundaries and vortices Majorana fermions, which are potentially applicable for topological quantum computations. The scarcity of the known experimentally verified physical systems with topological superconductivity, time-reversal invariant ones in particular, is giving rise to a strong demand for identifying new candidate materials. In this research, we study a heterostructure consisting of a transition metal oxide two-dimensional electron gas (2DEG) sandwiched by insulators near the paraelectric (PE) / ferroelectric (FE) phase transition. Its relevant characteristics is the combination of the transition metal spin-orbit coupling and the soft odd-parity phonons arising from the ferroelectric fluctuation; it gives rise to the fluctuating Rashba effect, which can mediate the pairing interaction for time-reversal invariant topological superconductivity. As the PE / FE phase transition can be driven by applying strain on the heterostructure, this system provides a tunable electron-phonon coupling. Through the first-principle calculations on the (001) [BaOsO3][BaTiO3]4, we find such electron-phonon coupling to be strong over a wide range of applied tensile bi-axial strain in the monolayer BaOsO3 sandwiched between the (001) BaTiO3, hence qualifying it as a good candidate material. Furthermore, the stability of topological superconductivity in this material is enhanced by its orbital physics that gives rise to the anisotropic dispersion.



قيم البحث

اقرأ أيضاً

74 - F. Lyzwa , A. Chan , J. Khmaladze 2019
We report the observation of low-frequency modes in the Raman spectra of thin-film superlattices of the high-temperature superconductor YBa$ _{2} $Cu$ _{3} $O$ _{7-delta} $ and various manganite perovskites. Our study shows that these modes are cause d by the backfolding of acoustic phonons due to the additional periodicity introduced by the superlattice. Such modes were previously only observed for ultra-pure semiconductor superlattices. They can be used to determine the bilayer thickness of the superlattice and its speed of sound. Moreover, we use the spatial resolution of Raman microscopy to map the film thickness inhomogeneity across a sample, making these modes a useful tool to characterize thin-film superlattices.
85 - W.M.Li , J.F.Zhao , L.P.Cao 2018
The mechanism of superconductivity in cuprates remains one of the big challenges of condensed matter physics.High Tc cuprates crystallize into layered perovskite structure featuring copper oxygen octahedral coordination. Due to the Jahn Teller effect in combination with the strong static Coulomb interaction, the octahedra in high Tc cuprates are elongated along the c axis, leading to a 3dx2-y2 orbital at the top of the band structure wherein the doped holes reside.This scenario gives rise to two dimensional characteristics in high Tc cuprates that favor d wave pairing symmetry. Here we report superconductivity in a cuprate Ba2CuO4-y wherein the local octahedron is in a very exceptional compressed version.The Ba2CuO4-y compound was synthesized at high pressure at high temperatures, and shows bulk superconductivity with critical temperature Tc above 70 K at ambient conditions. This superconducting transition temperature is more than 30 K higher than the Tc for the isostructural counterparts based on classical La2CuO4. X-ray absorption measurements indicate the heavily doped nature of the Ba2CuO4-y superconductor. In compressed octahedron the 3d3z2-r2 orbital will be lifted above the 3dx2-y2 orbital, leading to significant three dimensional nature in addition to the conventional 3dx2-y2 orbital. This work sheds important new light on advancing our comprehensive understanding of the superconducting mechanism of high Tc in cuprate materials.
148 - Shingo Yonezawa 2018
Nematic superconductivity is a novel class of superconductivity characterized by spontaneous rotational-symmetry breaking in the superconducting gap amplitude and/or Cooper-pair spins with respect to the underlying lattice symmetry. Doped Bi2Se3 supe rconductors, such as CuxBi2Se3, SrxBi2Se3, and NbxBi2Se3, are considered as candidates for nematic superconductors, in addition to the anticipated topological superconductivity. Recently, various bulk probes, such as nuclear magnetic resonance, specific heat, magnetotransport, magnetic torque, and magnetization, have consistently revealed two-fold symmetric behavior in their in-plane magnetic-field-direction dependence, although the underlying crystal lattice possesses three-fold rotational symmetry. More recently, nematic superconductivity is directly visualized using scanning tunneling microscopy and spectroscopy. In this short review, we summarize the current researches on the nematic behavior in superconducting doped Bi2Se3 systems, and discuss issues and perspectives.
Fascinating phenomena have been known to arise from the Dirac theory of relativistic quantum mechanics, which describes high energy particles having linear dispersion relations. Electrons in solids usually have non-relativistic dispersion relations b ut their quantum excitations can mimic relativistic effects. In topological insulators, electrons have both a linear dispersion relation, the Dirac behavior, on the surface and a non-relativistic energy dispersion in the bulk. Topological phases of matter have attracted much interest, particularly broken-symmetry phases in topological insulator materials. Here, we report by Nb doping that the topological insulator Bi2Se3 can be turned into a bulk type-II superconductor while the Dirac surface dispersion in the normal state is preserved. A macroscopic magnetic ordering appears below the superconducting critical temperature of 3.2 K indicating a spontaneous spin rotation symmetry breaking of the Nb magnetic moments. Even though such a magnetic order may appear at the edge of the superconductor, it is mediated by superconductivity and presents a novel phase of matter which gives rise to a zero-field Hall effect.
At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an $s$-wave SC in a TI can develop an order parameter with a $p$-wave component. Here we present experimental evidence for an unexpected proximity-induced novel superconducting state in a thin layer of the prototypical TI, Bi$_2$Se$_3$, proximity coupled to Nb. From depth-resolved magnetic field measurements below the superconducting transition temperature of Nb, we observe a local enhancement of the magnetic field in Bi$_2$Se$_3$ that exceeds the externally applied field, thus supporting the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state. Our experimental results are complemented by theoretical calculations supporting the appearance of such a component at the interface which extends into the TI. This state is topologically distinct from the conventional Bardeen-Cooper-Schrieffer state it originates from. To the best of our knowledge, these findings present a first observation of bulk odd-frequency superconductivity in a TI. We thus reaffirm the potential of the TI-SC interface as a versatile platform to produce novel superconducting states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا