ترغب بنشر مسار تعليمي؟ اضغط هنا

All-optical switch and logic gates based on all-dielectric hybrid silicon-Ge2Sb2Te5 metamaterials

294   0   0.0 ( 0 )
 نشر من قبل Zhaojian Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically propose an all-dielectric hybrid metamaterial (MM) to realize all-optical switch and logic gates in shortwave infrared (SWIR) band. Such MM consists of one silicon rod and one Ge2Sb2Te5 (GST) rod pair. Utilizing the transition from amorphous to crystalline state of GST, such MM can produce electromagnetically induced transparency (EIT) analogue with active control. Based on this, we realized all-optical switching at 1500 nm with a modulation depth 84%. Besides, three different logic gates, NOT, NOR and OR, can also be achieved in this device simultaneously. Thanks to the reversible and fast phase transition process of GST, this device possesses reconfigurable ability as well as fast response time, and has potential applications in future optical networks.



قيم البحث

اقرأ أيضاً

We experimentally study a Stub photonic lattice and excite their localized linear states originated from an isolated Flat Band at the center of the linear spectrum. By exciting these modes in different regions of the lattice, we observe that they do not diffract across the system and remain well trapped after propagating along the crystal. By using their wave nature, we are able to combine -- in phase and out of phase -- two neighbor states into a coherent superposition. These observations allow us to propose a novel setup for performing three different all-optical logical operations such as OR, AND, and XOR, positioning Flat Band systems as key setups to perform concrete applications at any level of power.
Nanophotonics is an important branch of modern optics dealing with light-matter interaction at the nanoscale. Nanoparticles can exhibit enhanced light absorption under illumination by light, and they become nanoscale sources of heat that can be preci sely controlled and manipulated. For metal nanoparticles, such effects have been studied in the framework of $textit{thermoplasmonics}$ which, similar to plasmonics itself, has a number of limitations. Recently emerged $textit{all-dielectric resonant nanophotonics}$ is associated with optically-induced electric and magnetic Mie resonances, and this field is developing very rapidly in the last decade. As a result, thermoplasmonics is being replaced by $textit{all-dielectric thermonanophotonics}$ with many important applications such as photothermal cancer therapy, drug and gene delivery, nanochemistry, and photothermal imaging. This review paper aims to introduce this new field of non-plasmonic nanophotonics and discuss associated thermally-induced processes at the nanoscale.
Ultra-compact, densely integrated optical components manufactured on a CMOS-foundry platform are highly desirable for optical information processing and electronic-photonic co-integration. However, the large spatial extent of evanescent waves arising from nanoscale confinement, ubiquitous in silicon photonic devices, causes significant cross-talk and scattering loss. Here, we demonstrate that anisotropic all-dielectric metamaterials open a new degree of freedom in total internal reflection to shorten the decay length of evanescent waves. We experimentally show the reduction of cross-talk by greater than 30 times and the bending loss by greater than 3 times in densely integrated, ultra-compact photonic circuit blocks. Our prototype all-dielectric metamaterial-waveguide achieves a low propagation loss of approximately 3.7 dB/cm, comparable to those of silicon strip waveguides. Our approach marks a departure from interference-based confinement as in photonic crystals or slot waveguides, which utilize nanoscale field enhancement. Its ability to suppress evanescent waves without substantially increasing the propagation loss shall pave the way for all-dielectric metamaterial-based dense integration.
Active metasurfaces, whose optical properties can be modulated post-fabrication, have emerged as an intensively explored field in recent years. The efforts to date, however, still face major performance limitations in tuning range, optical quality, a nd efficiency especially for non mechanical actuation mechanisms. In this paper, we introduce an active metasurface platform combining phase tuning covering the full 2$pi$ range and diffraction-limited performance using an all-dielectric, low-loss architecture based on optical phase change materials (O-PCMs). We present a generic design principle enabling switching of metasurfaces between two arbitrary phase profiles and propose a new figure-of-merit (FOM) tailored for active meta-optics. We implement the approach to realize a high-performance varifocal metalens operating at 5.2 $mu$m wavelength. The metalens is constructed using Ge2Sb2Se4Te1 (GSST), an O-PCM with a large refractive index contrast ($Delta$ n > 1) and unique broadband low-loss characteristics in both amorphous and crystalline states. The reconfigurable metalens features focusing efficiencies above 20% at both states for linearly polarized light and a record large switching contrast ratio of 29.5 dB. We further validated aberration-free imaging using the metalens at both optical states, which represents the first experimental demonstration of a non-mechanical active metalens with diffraction-limited performance.
Metasurface-mediated bound states in the continuum (BIC) provides a versatile platform for light manipulation at subwavelength dimension with diverging radiative quality factor and extreme optical localization. In this work, we employ magnetic dipole quasi-BIC resonance in asymmetric silicon nanobar metasurfaces to realize giant Goos-Hanchen (GH) shift enhancement by more than three orders of wavelength. In sharp contrast to GH shift based on the Brewster dip or transmission-type resonance, the maximum GH shift here is located at the reflection peak with unity reflectance, which can be conveniently detected in the experiment. By adjusting the asymmetric parameter of metasurfaces, the $Q$-factor and GH shift can be modulated accordingly. More interestingly, it is found that GH shift exhibits an inverse quadratic dependence on the asymmetric parameter. Furthermore, we design an ultrasensitive environmental refractive index sensor based on the quasi-BIC enhanced GH shift, with a maximum sensitivity of 1.5$times$10$^{7}$ $mu$m/RIU. Our work not only reveals the essential role of BIC in engineering the basic optical phenomena, but also suggests the way for pushing the performance limits of optical communication devices, information storage, wavelength division de/multiplexers, and ultrasensitive sensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا