ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration

160   0   0.0 ( 0 )
 نشر من قبل Saman Jahani
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra-compact, densely integrated optical components manufactured on a CMOS-foundry platform are highly desirable for optical information processing and electronic-photonic co-integration. However, the large spatial extent of evanescent waves arising from nanoscale confinement, ubiquitous in silicon photonic devices, causes significant cross-talk and scattering loss. Here, we demonstrate that anisotropic all-dielectric metamaterials open a new degree of freedom in total internal reflection to shorten the decay length of evanescent waves. We experimentally show the reduction of cross-talk by greater than 30 times and the bending loss by greater than 3 times in densely integrated, ultra-compact photonic circuit blocks. Our prototype all-dielectric metamaterial-waveguide achieves a low propagation loss of approximately 3.7 dB/cm, comparable to those of silicon strip waveguides. Our approach marks a departure from interference-based confinement as in photonic crystals or slot waveguides, which utilize nanoscale field enhancement. Its ability to suppress evanescent waves without substantially increasing the propagation loss shall pave the way for all-dielectric metamaterial-based dense integration.



قيم البحث

اقرأ أيضاً

We numerically propose an all-dielectric hybrid metamaterial (MM) to realize all-optical switch and logic gates in shortwave infrared (SWIR) band. Such MM consists of one silicon rod and one Ge2Sb2Te5 (GST) rod pair. Utilizing the transition from amo rphous to crystalline state of GST, such MM can produce electromagnetically induced transparency (EIT) analogue with active control. Based on this, we realized all-optical switching at 1500 nm with a modulation depth 84%. Besides, three different logic gates, NOT, NOR and OR, can also be achieved in this device simultaneously. Thanks to the reversible and fast phase transition process of GST, this device possesses reconfigurable ability as well as fast response time, and has potential applications in future optical networks.
Micro-sized spheres can focus light into subwavelength spatial domains: a phenomena called photonic nanojet. Even though well studied in three-dimensional (3D) configurations, only a few attempts have been reported to observe similar phenomena in two -dimensional (2D) systems. This, however, is important to take advantage of photonic nanojets in integrated optical systems. Usually, surface plasmon polaritons are suggested for this purpose, but they suffer notoriously from the rather low propagation lengths due to intrinsic absorption. Here, we solve this problem and explore, theoretically, numerically, and experimentally, the use of Bloch surface waves sustained by a suitably structured all-dielectric media to enable subwavelength focusing in an integrated planar optical system. Since only a low index contrast can be achieved while relying on Bloch surface waves, we perceive a new functional element that allows a tight focusing and the observation of a photonic nanojet on top of the surface. We experimentally demonstrate a spot size of 0.66{lambda} in the effective medium. Our approach paves the way to 2D all-dielectric photonic chips for nano-particle manipulation in fluidic devices and sensing applications.
166 - Shiqiao Wu , Bin Jiang , Yang Liu 2021
Photonic crystals have been demonstrated as a versatile platform for the study of topological phenomena. The recent discovery of higher order topological insulators introduces new aspects of topological photonic crystals which are yet to be explored. Here, we propose a dielectric photonic crystal with unconventional higher order band topology. Besides the conventional spectral features of gapped edge states and in gap corner states, topological band theory predicts that the corner boundary of the higher-order topological insulator hosts a 2/3 fractional charge. We demonstrate that in the photonic crystal such a fractional charge can be verified from the local density of states of photons, through the concept of local spectral charge as an analog of the local electric charge due to band filling anomaly in electronic systems. Furthermore, we show that by introducing a disclination in the proposed photonic crystal, localized states and a 2/3 fractional spectral charge emerge around the disclination core, as the manifestation of the bulk disclination correspondence. The predicted effects can be readily observed in the state-of-the-art experiments and may lead to potential applications in integrated and quantum photonics.
Nanophotonics is an important branch of modern optics dealing with light-matter interaction at the nanoscale. Nanoparticles can exhibit enhanced light absorption under illumination by light, and they become nanoscale sources of heat that can be preci sely controlled and manipulated. For metal nanoparticles, such effects have been studied in the framework of $textit{thermoplasmonics}$ which, similar to plasmonics itself, has a number of limitations. Recently emerged $textit{all-dielectric resonant nanophotonics}$ is associated with optically-induced electric and magnetic Mie resonances, and this field is developing very rapidly in the last decade. As a result, thermoplasmonics is being replaced by $textit{all-dielectric thermonanophotonics}$ with many important applications such as photothermal cancer therapy, drug and gene delivery, nanochemistry, and photothermal imaging. This review paper aims to introduce this new field of non-plasmonic nanophotonics and discuss associated thermally-induced processes at the nanoscale.
The excitation of toroidal multipoles in metamaterials was investigated for high-Q response at a subwavelength scale. In this study, we explored the optimization of toroidal excitations in a planar metamaterial comprised of asymmetric split ring reso nators (ASRRs). It was found that the scattering power of toroidal dipole can be remarkably strengthened by adjusting the characteristic parameter of ASRRs: asymmetric factor. Interestingly, the improvement in toroidal excitation accompanies increment on the Q-factor of the toroidal metamaterial; it is shown that both the scattering power of toroidal dipole and the Q-factor were increased more than one order by changing the asymmetric factor of ASRRs. The optimization in excitation of toroidal multipole provide opportunity to further increase the Q-factor of metamaterial and boost light-matter interactions at the subwavelength scale for potential applications in low-power nonlinear processing, and sensitive photonic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا