ترغب بنشر مسار تعليمي؟ اضغط هنا

CSI2264: Simultaneous optical and X-ray variability in the pre-main sequence stars of NGC2264. II: Photometric variability, magnetic activity, and rotation in classIII objects and stars with transition disks

65   0   0.0 ( 0 )
 نشر من قبل Mario Giuseppe Guarcello Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pre-main sequence stars are variable sources. In diskless stars this variability is mainly due to the rotational modulation of dark photospheric spots and active regions, as in main sequence stars even if associated with a stronger magnetic activity. Aims. We aim at analyzing the simultaneous optical and X-ray variability in these stars to unveil how the activity in the photosphere is connected with that in the corona, to identify the dominant surface magnetic activity, and to correlate our results with stellar properties, such as rotation and mass. Methods. We analyzed the simultaneous optical and X-ray variability in stars without inner disks (e.g., class III objects and stars with transition disks) in NGC 2264 from observations obtained with Chandra/ACIS-I and CoRoT as part of the Coordinated Synoptic Investigation of NGC 2264. We searched for those stars whose optical and X-ray variability is correlated, anti-correlated, or not correlated by sampling their optical and X-ray light curves in suitable time intervals and studying the correlation between the flux observed in optical and in X-rays. We then studied how this classification is related with stellar properties. Results. Starting from a sample of 74 class III/transition disk (TD) stars observed with CoRoT and detected with Chandra with more than 60 counts, we selected 16 stars whose optical and X-ray variability is anti-correlated, 11 correlated, and 17 where there is no correlation. The remaining stars did not fall in any of these groups. We interpreted the anti-correlated optical and X-ray variability as typical of spot-dominated sources, due to the rotational modulation of photospheric spots spatially coincident to coronal active regions, and correlated variability typical of faculae-dominated sources, where the brightening due to faculae is dominant over the darkening due to spots. [Conclusions not shown in the pre-print]



قيم البحث

اقرأ أيضاً

Pre-main sequence stars are variable sources. In stars with disks, this variability is related to the morphology of the inner circumstellar region (<0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264. In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results. We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9/24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe on average a larger soft X-ray spectral component not observed in non accreting stars.
92 - B. Stelzer 2016
This article provides a review of X-ray variability from late-type stars with particular focus on the achievements of XMM-Newton and its potential for future studies in this field.
We present the results from our time-series imaging data taken with the 1.3m Devasthal fast optical telescope and 0.81m Tenagara telescope in $V$, $R_{c}$, $I_{c}$ bands covering an area of $sim18^prime.4times 18^prime.4$ towards the star-forming reg ion Sh 2-190. This photometric data helped us to explore the nature of the variability of pre-main sequence (PMS) stars. We have identified 85 PMS variables, i.e., 37 Class II and 48 Class III sources. Forty-five of the PMS variables are showing periodicity in their light curves. We show that the stars with thicker discs and envelopes rotate slower and exhibit larger photometric variations compared to their disc-less counterparts. This result suggests that rotation of the PMS stars is regulated by the presence of circumstellar discs. We also found that the period of the stars show a decreasing trend with increasing mass in the range of $sim$0.5-2.5 M$_odot$. Our result indicates that most of the variability in Class II sources is ascribed to the presence of thick disc, while the presence of cool spots on the stellar surface causes the brightness variation in Class III sources. X-ray activities in the PMS stars were found to be at the saturation level reported for the main sequence (MS) stars. The younger counterparts of the PMS variables are showing less X-ray activity hinting towards a less significant role of a stellar disc in X-ray generation.
132 - A. Frasca , E. Covino , L. Spezzi 2009
We performed an intensive photometric monitoring of the PMS stars falling in a field of about 10x10 arc-minutes in the vicinity of the Orion Nebula Cluster (ONC). Photometric data were collected between November 2006 and January 2007 with the REM tel escope in the VRIJHK bands. The largest number of observations is in the I band (about 2700 images) and in J and H bands (about 500 images in each filter). From the observed rotational modulation, induced by the presence of surface inhomogeneities, we derived the rotation periods for 16 stars and improved previous determinations for the other 13. The analysis of the spectral energy distributions and, for some stars, of high-resolution spectra provided us with the main stellar parameters (luminosity, effective temperature, mass, age, and vsini). We also report the serendipitous detection of two strong flares in two of these objects. In most cases, the light-curve amplitudes decrease progressively from the R to H band as expected for cool starspots, while in a few cases, they can only be modelled by the presence of hot spots, presumably ascribable to magnetospheric accretion. The application of our own spot model to the simultaneous light curves in different bands allowed us to deduce the spot parameters and particularly to disentangle the spot temperature and size effects on the observed light curves.
We present thirteen epochs of near-infrared (0.8-5 micron) spectroscopic observations of the pre-transitional, gapped disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (including Br gamma, Pa beta, and the 0.8446 micron line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 x 10^-8 solar masses per year was derived from the Br gamma and Pa beta lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months. The continuum also varied, but by only ~30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 microns was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for defining the inner edge of the gap, they could interact with the material on time scales commensurate with what is observed for the variations in the dust, while other disk instabilities (thermal, magnetorotational) would operate there on longer time scales than we observe for the inner dust belt. For SAO 206462, the orbital period would likely be 1-3 years. If the changes are being induced in the disk material closer to the star than the gap, a variety of mechanisms (disk instabilities, interactions via planets) might be responsible for the changes seen. The He I feature is most likely due to a wind whose orientation changes with respect to the observer on time scales of a day or less. To further constrain the origin of the gas and dust emission will require multiple spectroscopic and interferometric observations on both shorter and longer time scales that have been sampled so far.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا