ﻻ يوجد ملخص باللغة العربية
We consider an acoustic obstacle reconstruction problem with Poisson data. Due to the stochastic nature of the data, we tackle this problem in the framework of Bayesian inversion. The unknown obstacle is parameterized in its angular form. The prior for the parameterized unknown plays key role in the Bayes reconstruction algorithm. The most popular used prior is the Gaussian. Under the Gaussian prior assumption, we further suppose that the unknown satisfies the total variation prior. With the hybrid prior, the well-posedness of the posterior distribution is discussed. The numerical examples verify the effectiveness of the proposed algorithm.
In this work, we are interested in the determination of the shape of the scatterer for the two dimensional time harmonic inverse medium scattering problems in acoustics. The scatterer is assumed to be a piecewise constant function with a known value
In the current work we present two generalizations of the Parallel Tempering algorithm, inspired by the so-called continuous-time Infinite Swapping algorithm. Such a method, found its origins in the molecular dynamics community, and can be understood
Data assisted reconstruction algorithms, incorporating trained neural networks, are a novel paradigm for solving inverse problems. One approach is to first apply a classical reconstruction method and then apply a neural network to improve its solutio
The Poisson-Boltzmann equation is a widely used model to study the electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of
In recent years, infinite-dimensional methods have been introduced for the Gaussian channels estimation. The aim of this paper is to study the application of similar methods to Poisson channels. In particular we compute the Bayesian estimator of a Po