ترغب بنشر مسار تعليمي؟ اضغط هنا

Noncommutative black hole in the Finslerian spacetime

57   0   0.0 ( 0 )
 نشر من قبل Debabrata Deb
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the behavior of the noncommutative radiating Schwarzschild black hole in the Finslerian spacetime. The investigation shows that black hole possesses either (i) two horizons, or (ii) a single horizon, or (iii) no horizon corresponding to a minimal mass. We obtain that the minimal mass significantly changes with the Finslerian parameter, keeping minimal horizon remain unchanged. It turns out that under Finslerian spacetime, the maximum temperature before cooling down to absolute zero varies with Finslerian parameter. We then study the stability of the black hole by analyzing the specific heat and free energy. The energy conditions, their violation limit also scrutinized. Our findings suggest a stable black hole remnant, whose mass and size are uniquely determined in terms of the Finslerian parameter $overline{Ric}$ and noncommutative parameter $theta$. The physical relevance of these results are discussed in a brief.



قيم البحث

اقرأ أيضاً

We give a general derivation, for any static spherically symmetric metric, of the relation $T_h=frac{cal K}{2pi}$ connecting the black hole temperature ($T_h$) with the surface gravity ($cal K$), following the tunneling interpretation of Hawking radi ation. This derivation is valid even beyond the semi classical regime i. e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space time. The effects of back reaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and back reaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one.
An exact spherically symmetric black hole solution of a recently proposed noncommutative gravity theory based on star products and twists is constructed. This is the first nontrivial exact solution of that theory. The resulting noncommutative black h ole quite naturally exhibits holographic behavior; outside the horizon it has a fuzzy shell-like structure, inside the horizon it has a noncommutative de Sitter geometry. The star product and twist contain Killing vectors and act non-trivially on tensors except the metric, which is central in the algebra. The method used can be applied whenever there are enough spacetime symmetries. This includes noncommutati
We interpret, in the realm of relativistic quantum field theory, the tangential operator given by Coleman, Mandula as an appropriate coordinate operator. The investigation shows that the operator generates a Snyder-like noncommutative spacetime with a minimal length that is given by the mass. By using this operator to define a noncommutative spacetime, we obtain a Poincare invariant noncommutative spacetime and in addition solve the soccer-ball problem. Moreover, from recent progress in deformation theory we extract the idea how to obtain, in a physical and mathematical well-defined manner, an emerging noncommutative spacetime. This is done by a strict deformation quantization known as Rieffel deformation (or warped convolutions). The result is a noncommutative spacetime combining a Snyder and a Moyal-Weyl type of noncommutativity that in addition behaves covariant under transformations of the textbf{whole} Poincare group.
104 - Marco Spaans 2016
Black holes are extreme expressions of gravity. Their existence is predicted by Einsteins theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_fsim 3times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f sim 3times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P sim 2times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $lambda sim 3times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.
62 - G.E. Volovik 2021
We discuss the macroscopic quantum tunneling from the black hole to the white hole of the same mass. Previous calculations in Ref.[1] demonstrated that the probability of the tunneling is $p propto exp(-2S_text{BH})$, where $S_text{BH}$ is the entrop y of the Schwarzschild black hole. This in particular suggests that the entropy of the white hole is with minus sign the entropy of the black hole, $S_text{WH}(M)=- S_text{BH}(M)= - A/(4G)$. Here we use a different way of calculations. We consider three different types of the hole objects: black hole, white hole and the fully static intermediate state. The probability of tunneling transitions between these three states is found using singularities in the coordinate transformations between these objects. The black and white holes are described by the Painleve-Gullstrand coordinates with opposite shift vectors, while the intermediate state is described by the static Schwarzschild coordinates. The singularities in the coordinate transformations lead to the imaginary part in the action, which determines the tunneling exponent. For the white hole the negative entropy is obtained, while the intermediate state -- the fully static hole -- has zero entropy. This procedure is extended to the Reissner-Nordstrom black hole and to its white and static partners, and also to the entropy and temperature of the de Sitter Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا