ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring difference in public perceptions on HPV vaccine between gender groups from Twitter using deep learning

407   0   0.0 ( 0 )
 نشر من قبل Jingcheng Du
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, we proposed a convolutional neural network model for gender prediction using English Twitter text as input. Ensemble of proposed model achieved an accuracy at 0.8237 on gender prediction and compared favorably with the state-of-the-art performance in a recent author profiling task. We further leveraged the trained models to predict the gender labels from an HPV vaccine related corpus and identified gender difference in public perceptions regarding HPV vaccine. The findings are largely consistent with previous survey-based studies.



قيم البحث

اقرأ أيضاً

Transformer models have shown impressive performance on a variety of NLP tasks. Off-the-shelf, pre-trained models can be fine-tuned for specific NLP classification tasks, reducing the need for large amounts of additional training data. However, littl e research has addressed how much data is required to accurately fine-tune such pre-trained transformer models, and how much data is needed for accurate prediction. This paper explores the usability of BERT (a Transformer model for word embedding) for gender prediction on social media. Forensic applications include detecting gender obfuscation, e.g. males posing as females in chat rooms. A Dutch BERT model is fine-tuned on different samples of a Dutch Twitter dataset labeled for gender, varying in the number of tweets used per person. The results show that finetuning BERT contributes to good gender classification performance (80% F1) when finetuned on only 200 tweets per person. But when using just 20 tweets per person, the performance of our classifier deteriorates non-steeply (to 70% F1). These results show that even with relatively small amounts of data, BERT can be fine-tuned to accurately help predict the gender of Twitter users, and, consequently, that it is possible to determine gender on the basis of just a low volume of tweets. This opens up an operational perspective on the swift detection of gender.
104 - Jieyu Zhao , Yichao Zhou , Zeyu Li 2018
Word embedding models have become a fundamental component in a wide range of Natural Language Processing (NLP) applications. However, embeddings trained on human-generated corpora have been demonstrated to inherit strong gender stereotypes that refle ct social constructs. To address this concern, in this paper, we propose a novel training procedure for learning gender-neutral word embeddings. Our approach aims to preserve gender information in certain dimensions of word vectors while compelling other dimensions to be free of gender influence. Based on the proposed method, we generate a Gender-Neutral variant of GloVe (GN-GloVe). Quantitative and qualitative experiments demonstrate that GN-GloVe successfully isolates gender information without sacrificing the functionality of the embedding model.
The goal of Author Profiling (AP) is to identify demographic aspects (e.g., age, gender) from a given set of authors by analyzing their written texts. Recently, the AP task has gained interest in many problems related to computer forensics, psycholog y, marketing, but specially in those related with social media exploitation. As known, social media data is shared through a wide range of modalities (e.g., text, images and audio), representing valuable information to be exploited for extracting valuable insights from users. Nevertheless, most of the current work in AP using social media data has been devoted to analyze textual information only, and there are very few works that have started exploring the gender identification using visual information. Contrastingly, this paper focuses in exploiting the visual modality to perform both age and gender identification in social media, specifically in Twitter. Our goal is to evaluate the pertinence of using visual information in solving the AP task. Accordingly, we have extended the Twitter corpus from PAN 2014, incorporating posted images from all the users, making a distinction between tweeted and retweeted images. Performed experiments provide interesting evidence on the usefulness of visual information in comparison with traditional textual representations for the AP task.
In this paper we consider two sequence tagging tasks for medieval Latin: part-of-speech tagging and lemmatization. These are both basic, yet foundational preprocessing steps in applications such as text re-use detection. Nevertheless, they are genera lly complicated by the considerable orthographic variation which is typical of medieval Latin. In Digital Classics, these tasks are traditionally solved in a (i) cascaded and (ii) lexicon-dependent fashion. For example, a lexicon is used to generate all the potential lemma-tag pairs for a token, and next, a context-aware PoS-tagger is used to select the most appropriate tag-lemma pair. Apart from the problems with out-of-lexicon items, error percolation is a major downside of such approaches. In this paper we explore the possibility to elegantly solve these tasks using a single, integrated approach. For this, we make use of a layered neural network architecture from the field of deep representation learning.
Objective: The objective of this study is to develop a deep learning pipeline to detect signals on dietary supplement-related adverse events (DS AEs) from Twitter. Material and Methods: We obtained 247,807 tweets ranging from 2012 to 2018 that mentio ned both DS and AE. We annotated biomedical entities and relations on 2,000 randomly selected tweets. For the concept extraction task, we compared the performance of traditional word embeddings with SVM, CRF and LSTM-CRF classifiers to BERT models. For the relation extraction task, we compared GloVe vectors with CNN classifiers to BERT models. We chose the best performing models in each task to assemble an end-to-end deep learning pipeline to detect DS AE signals and compared the results to the known DS AEs from a DS knowledge base (i.e., iDISK). Results: In both tasks, the BERT-based models outperformed traditional word embeddings. The best performing concept extraction model is the BioBERT model that can identify supplement, symptom, and body organ entities with F1-scores of 0.8646, 0.8497, and 0.7104, respectively. The best performing relation extraction model is the BERT model that can identify purpose and AE relations with F1-scores of 0.8335 and 0.7538, respectively. The end-to-end pipeline was able to extract DS indication and DS AEs with an F1-score of 0.7459 and 0,7414, respectively. Comparing to the iDISK, we could find both known and novel DS-AEs. Conclusion: We have demonstrated the feasibility of detecting DS AE signals from Twitter with a BioBERT-based deep learning pipeline.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا