ﻻ يوجد ملخص باللغة العربية
An important yet rarely tackled problem in dialogue state tracking (DST) is scalability for dynamic ontology (e.g., movie, restaurant) and unseen slot values. We focus on a specific condition, where the ontology is unknown to the state tracker, but the target slot value (except for none and dontcare), possibly unseen during training, can be found as word segment in the dialogue context. Prior approaches often rely on candidate generation from n-gram enumeration or slot tagger outputs, which can be inefficient or suffer from error propagation. We propose BERT-DST, an end-to-end dialogue state tracker which directly extracts slot values from the dialogue context. We use BERT as dialogue context encoder whose contextualized language representations are suitable for scalable DST to identify slot values from their semantic context. Furthermore, we employ encoder parameter sharing across all slots with two advantages: (1) Number of parameters does not grow linearly with the ontology. (2) Language representation knowledge can be transferred among slots. Empirical evaluation shows BERT-DST with cross-slot parameter sharing outperforms prior work on the benchmark scalable DST datasets Sim-M and Sim-R, and achieves competitive performance on the standard DSTC2 and WOZ 2.0 datasets.
Recent studies try to build task-oriented dialogue systems in an end-to-end manner and the existing works make great progress on this task. However, there is still an issue need to be further considered, i.e., how to effectively represent the knowled
We propose a new end-to-end neural diarization (EEND) system that is based on Conformer, a recently proposed neural architecture that combines convolutional mappings and Transformer to model both local and global dependencies in speech. We first show
The key challenge in multiple-object tracking task is temporal modeling of the object under track. Existing tracking-by-detection methods adopt simple heuristics, such as spatial or appearance similarity. Such methods, in spite of their commonality,
We first propose a new task named Dialogue Description (Dial2Desc). Unlike other existing dialogue summarization tasks such as meeting summarization, we do not maintain the natural flow of a conversation but describe an object or an action of what pe
Spoken language understanding (SLU) refers to the process of inferring the semantic information from audio signals. While the neural transformers consistently deliver the best performance among the state-of-the-art neural architectures in field of na