ترغب بنشر مسار تعليمي؟ اضغط هنا

Prototype of a transient waveform recording ASIC

49   0   0.0 ( 0 )
 نشر من قبل Lei Zhao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper presents the design and measurement results of a transient waveform recording ASIC based on the Switched Capacitor Array (SCA) architecture. This 0.18 {mu}m CMOS prototype device contains two channels and each channel employs a SCA of 128 samples deep, a 12-bit Wilkinson ADC and a serial data readout. A series of tests have been conducted and the results indicate that: a full 1 V signal voltage range is available, the input analog bandwidth is approximately 450 MHz and the sampling speed is adjustable from 0.076 to 3.2 Gsps (Gigabit Samples Per Second). For precision waveform timing extraction, careful calibration of timing intervals between samples is conducted to improve the timing resolution of such chips, and the timing precision of this ASIC is proved to be better than 15 ps RMS.

قيم البحث

اقرأ أيضاً

JUNO is proposed to determine the neutrino mass hierarchy and rich in many other neutrino topics. A prototype is designed and set up for better understanding sub-systems of future detector. The preliminary results show that its threshold reaches ~0.3 MeV with trigger rate ~290 Hz on the ground with cosmic muon rate ~35 Hz. Aiming for a better detector understanding from PMT signal, three reconstruction algorithms are compared for PMT waveforms with different overshoot ratios, including charge integration, waveform fitting, and deconvolution. It is concluded that the three methods have similar performance on uncertainty and systematic bias while deconvolution algorithm is best to handle larger overshoot and the simplest charge integration could be considered with controlled overshoot for future fast preliminary reconstruction.
221 - C. Agapopoulou , S. Blin , A. Blot 2020
For the High-Luminosity phase of LHC, the ATLAS experiment is proposing the addition of a High Granularity Timing Detector (HGTD) in the forward region to mitigate the effects of the increased pile-up. The chosen detection technology is Low Gain Aval anche Detector (LGAD) silicon sensors that can provide an excellent timing resolution below 50 ps. The front-end read-out ASIC must maintain the performance of the sensor, while keeping low power consumption. This paper presents the results on the first prototype of a front-end ASIC, named ALTIROC0, which contains the analog stages (preamplifier and discriminator) of the read-out chip. The ASIC was characterised both alone and as part of a module with a 2$times$2 LGAD array of 1.1$times$1.1 mm$^2$ pads bump-bonded to it. The various contributions of the electronics to the time resolution were investigated in test-bench measurements with a calibration setup. Both when the ASIC is alone or with a bump-bonded sensor, the jitter of the ASIC is better than 20 ps for an injected charge of 10 fC. The time walk effect that arises from the different response of the preamplifier for various injected charges can be corrected up to 10 ps using a Time Over Threshold measurement. The combined performance of the ASIC and the LGAD sensor, which was measured during a beam test campaign in October 2018 with pions of 120 GeV energy at the CERN SPS, is around 40 ps for all measured modules. All tested modules show good efficiency and time resolution uniformity.
We report on the development of a front-end ASIC for silicon-strip detectors of the J-PARC Muon g-2/EDM experiment. This experiment aims to measure the muon anomalous magnetic moment and electric dipole moment precisely to explore new physics beyond the Standard Model. Since the time and momentum of positrons from muon decay are key information in the experiment, a fast response with high granularity is demanded to silicon-strip detectors as the positron tracker. The readout ASIC is thus required to tolerate a high hit rate of 1.4 MHz per strip and to have deep memory for the period of 40 us with 5 ns time resolution. To satisfy the experimental requirements, an analog prototype ASIC was newly designed with the Silterra 180 nm CMOS technology. In the evaluation test, the time-walk was demonstrated to reach 0.8~ns with a sufficient dynamic range of 6~MIPs and pulse width of 45~ns for 1 MIP event. The design details and performance of the ASIC are discussed in this article.
The FAIR facility is an international accelerator centre for research with ion and antiproton beams. It is being built at Darmstadt, Germany as an extension to the current GSI research institute. One major part of the facility will be the Super-FRS s eparator, which will be include in phase one of the project construction. The NUSTAR experiments will benefit from the Super-FRS, which will deliver an unprecedented range of radioactive ion beams (RIB). These experiments will use beams of different energies and characteristics in three different branches; the high-energy which utilizes the RIB at relativistic energies 300-1500 MeV /u as created in the production process, the low energy branch aims to use beams in the range of 0-150 MeV/u whereas the ring branch will cool and store beams in the NESR ring. The main tasks for the Super-FRS beam diagnostics chambers will be for the set up and adjustment of the separator as well as to provide tracking and event-by-event particle identification. The Helsinki Institute of Physics, the Comenius University, and the Detector Laboratory and Experimental electronics at GSI are in a joint R&D phase of a GEM-TPC detector which could satisfy the requirements of such diagnostics and tracking chambers in terms of tracking efficiency, space resolution, count rate capability and momenta resolution. The current status of the first prototype and the preliminary results from the test beam campaign S417 using the n-Xyter chips mounted on GEMEX cards will be shown.
The use of GEM foils for the amplification stage of a TPC instead of a con- ventional MWPC allows one to bypass the necessity of gating, as the backdrift is suppressed thanks to the asymmetric field configuration. This way, a novel continuously runni ng TPC, which represents one option for the PANDA central tracker, can be realized. A medium sized prototype with a diameter of 300 mm and a length of 600 mm will be tested inside the FOPI spectrometer at GSI using a carbon or lithium beam at intermediate energies (E = 1-3AGeV). This detector test under realistic experimental conditions should allow us to verify the spatial resolution for single tracks and the reconstruction capability for displaced vertexes. A series of physics measurement implying pion beams is scheduled with the FOPI spectrometer together with the GEM-TPC as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا