ترغب بنشر مسار تعليمي؟ اضغط هنا

Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment

196   0   0.0 ( 0 )
 نشر من قبل Haomin Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomically thin hexagonal boron nitride (h-BN) is often regarded as an elastic film that is impermeable to gases. The high stabilities in thermal and chemical properties allow h-BN to serve as a gas barrier under extreme conditions.In this work, we demonstrate the isolation of hydrogen in bubbles of h-BN via plasma treatment.Detailed characterizations reveal that the substrates do not show chemical change after treatment. The bubbles are found to withstand thermal treatment in air,even at 800 degree celsius. Scanning transmission electron microscopy investigation shows that the h-BN multilayer has a unique aligned porous stacking nature, which is essential for the character of being transparent to atomic hydrogen but impermeable to hydrogen molecules. We successfully demonstrated the extraction of hydrogen gases from gaseous compounds or mixtures containing hydrogen element. The successful production of hydrogen bubbles on h-BN flakes has potential for further application in nano/micro-electromechanical systems and hydrogen storage.

قيم البحث

اقرأ أيضاً

Luminescent defect-centers in hexagonal boron nitride (hBN) have emerged as a promising 2D-source of single photon emitters (SPEs) due to their high brightness and robust operation at room temperature. The ability to create such emitters with well-de fined optical properties is a cornerstone towards their integration into on-chip photonic architectures. Here, we report an effective approach to fabricate hBN single photon emitters (SPEs) with desired emission properties in two isolated spectral regions via the manipulation of boron diffusion through copper during atmospheric pressure chemical vapor deposition (APCVD)--a process we term gettering. Using the gettering technique we deterministically place the resulting zero-phonon line (ZPL) between the regions 550-600 nm or from 600-650 nm, paving the way for hBN SPEs with tailored emission properties across a broad spectral range. Our ability to control defect formation during hBN growth provides a simple and cost-effective means to improve the crystallinity of CVD hBN films, and lower defect density making it applicable to hBN growth for a wide range of applications. Our results are important to understand defect formation of quantum emitters in hBN and deploy them for scalable photonic technologies.
Development of scalable quantum photonic technologies requires on-chip integration of components such as photonic crystal cavities and waveguides with nonclassical light sources. Recently, hexagonal boron nitride (hBN) has emerged as a promising plat form for nanophotonics, following reports of hyperbolic phonon-polaritons and optically stable, ultra-bright quantum emitters. However, exploitation of hBN in scalable, on-chip nanophotonic circuits, quantum information processing and cavity quantum electrodynamics (QED) experiments requires robust techniques for the fabrication of monolithic optical resonators. In this letter, we design and engineer high quality photonic crystal cavities from hBN. We employ two approaches based on a focused ion beam method and a minimally-invasive electron beam induced etching (EBIE) technique to fabricate suspended two dimensional (2D) and one dimensional (1D) cavities with quality (Q) factors in excess of 2,000. Subsequently, we show deterministic, iterative tuning of individual cavities by direct-write, single-step EBIE without significant degradation of the Q-factor. The demonstration of tunable, high Q cavities made from hBN is an unprecedented advance in nanophotonics based on van der Waals materials. Our results and hBN processing methods open up promising new avenues for solid-state systems with applications in integrated quantum photonics, polaritonics and cavity QED experiments.
Nanoscale optical thermometry is a promising non-contact route for measuring local temperature with both high sensitivity and spatial resolution. In this work, we present a deterministic optical thermometry technique based on quantum emitters in nano scale hexagonal boron-nitride. We show that these nanothermometers exhibit better performance than that of homologous, all-optical nanothermometers both in sensitivity and range of working temperature. We demonstrate their effectiveness as nanothermometers by monitoring the local temperature at specific locations in a variety of custom-built micro-circuits. This work opens new avenues for nanoscale temperature measurements and heat flow studies in miniaturized, integrated devices.
Growing interest in devices based on layered van der Waals (vdW) materials is motivating the development of new nanofabrication methods. Hexagonal boron nitride (hBN) is one of the most promising materials for studies of quantum photonics and polarit onics. Here, we report in detail on a promising nanofabrication processes used to fabricate several hBN photonic devices using a hybrid electron beam induced etching (EBIE) and reactive ion etching (RIE) technique. We highlight the shortcomings and benefits of RIE and EBIE and demonstrate the utility of the hybrid approach for the fabrication of suspended and supported device structures with nanoscale features and highly vertical sidewalls. Functionality of the fabricated devices is proven by measurements of high quality cavity optical modes (Q~1500). Our nanofabrication approach constitutes an advance towards an integrated, monolithic quantum photonics platform based on hBN and other layered vdW materials.
Solid-state single-photon emitters (SPEs) such as the bright, stable, room-temperature defects within hexagonal boron nitride (hBN) are of increasing interest for quantum information science applications. To date, the atomic and electronic origins of SPEs within hBN are not well understood, and no studies have reported photochromism or explored cross-correlations between hBN SPEs. Here, we combine irradiation-time dependent measures of quantum efficiency and microphotoluminescence (${mu}$PL) spectroscopy with two-color Hanbury Brown-Twiss interferometry to enable an investigation of the electronic structure of hBN defects. We identify photochromism in a hBN SPE that exhibits cross-correlations and correlated quantum efficiencies between the emission of its two zero-phonon lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا