ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks

61   0   0.0 ( 0 )
 نشر من قبل Benjamin Roberts
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We search for transient variations of the fine structure constant using data from a European network of fiber-linked optical atomic clocks. By searching for coherent variations in the recorded clock frequency comparisons across the network, we significantly improve the constraints on transient variations of the fine structure constant. For example, we constrain the variation in alpha to <5*10^-17 for transients of duration 10^3 s. This analysis also presents a possibility to search for dark matter, the mysterious substance hypothesised to explain galaxy dynamics and other astrophysical phenomena that is thought to dominate the matter density of the universe. At the current sensitivity level, we find no evidence for dark matter in the form of topological defects (or, more generally, any macroscopic objects), and we thus place constraints on certain potential couplings between the dark matter and standard model particles, substantially improving upon the existing constraints, particularly for large (>~10^4 km) objects.

قيم البحث

اقرأ أيضاً

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared to the galaxy but much larger than the Earth. Here, we report the results of a search for transient signals from axion-like particle domain walls with the Global Network of Optical Magnetometers for Exotic physics searches (GNOME). We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of data from a continuous month-long operation of the GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios.
We discuss present and future cosmological constraints on variations of the fine structure constant $alpha$ induced by an early dark energy component having the simplest allowed (linear) coupling to electromagnetism. We find that current cosmological data show no variation of the fine structure constant at recombination respect to the present-day value, with $alpha$ / $alpha_0$ = 0.975 pm 0.020 at 95 % c.l., constraining the energy density in early dark energy to $Omega_e$ < 0.060 at 95 % c.l.. Moreover, we consider constraints on the parameter quantifying the strength of the coupling by the scalar field. We find that current cosmological constraints on the coupling are about 20 times weaker than those obtainable locally (which come from Equivalence Principle tests). However forthcoming or future missions, such as Planck Surveyor and CMBPol, can match and possibly even surpass the sensitivity of current local tests.
175 - Silvia Galli 2012
We propose a new method to probe for variations in the fine structure constant alpha using clusters of galaxies, opening up a window on a new redshift range for such constraints. Hot clusters shine in the X-ray mainly due to bremsstrahlung, while the y leave an imprint on the CMB frequency spectrum through the Sunyaev-Zeldovich effect. These two physical processes can be characterized by the integrated Comptonization parameter Y_SZ DA^2 and its X-ray counterpart, the Y_X parameter. The ratio of these two quantities is expected to be constant from numerical simulations and current observations. We show that this fact can be exploited to constrain alpha, as the ratio of the two parameters depends on the fine structure constant as alpha^{3.5}. We determine current constraints from a combination of Planck SZ and XMM-Newton data, testing different models of variation of alpha. When fitting for a constant value of alpha, we find that current constraints are at the 1% level, comparable with current CMB constraints. We discuss strategies for further improving these constraints by almost an order of magnitude.
Various classes of exotic singularity models have been studied as possible mimic models for the observed recent acceleration of the universe. Here we further study one of these classes and, under the assumption that they are phenomenological toy mode ls for the behavior of an underlying scalar field which also couples to the electromagnetic sector of the theory, obtain the corresponding behavior of the fine-structure constant $alpha$ for particular choices of model parameters that have been previously shown to be in reasonable agreement with cosmological observations. We then compare this predicted behavior with available measurements of $alpha$, thus constraining this putative coupling to electromagnetism. We find that values of the coupling which would provide a good fit to spectroscopic measurements of $alpha$ are in more than three-sigma tension with local atomic clock bounds. Future measurements by ESPRESSO and ELT-HIRES will provide a definitive test of these models.
61 - Laura Baudis 2018
The dark matter problem is almost a century old. Since the 1930s evidence has been growing that our cosmos is dominated by a new form of non-baryonic matter, that holds galaxies and clusters together and influences cosmic structures up to the largest observed scales. At the microscopic level, we still do not know the composition of this dark, or invisible matter, which does not interact directly with light. The simplest assumption is that it is made of new particles that interact with gravity and at most weakly with known elementary particles. I will discuss searches for such new particles, both space- and Earth-bound including those placed in deep underground laboratories. While a dark matter particle hasnt been yet identified, even after decades of concerted efforts, new technological developments and experiments have reached sensitivities where a discovery might be imminent, albeit certainly not guaranteed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا