ﻻ يوجد ملخص باللغة العربية
We discuss present and future cosmological constraints on variations of the fine structure constant $alpha$ induced by an early dark energy component having the simplest allowed (linear) coupling to electromagnetism. We find that current cosmological data show no variation of the fine structure constant at recombination respect to the present-day value, with $alpha$ / $alpha_0$ = 0.975 pm 0.020 at 95 % c.l., constraining the energy density in early dark energy to $Omega_e$ < 0.060 at 95 % c.l.. Moreover, we consider constraints on the parameter quantifying the strength of the coupling by the scalar field. We find that current cosmological constraints on the coupling are about 20 times weaker than those obtainable locally (which come from Equivalence Principle tests). However forthcoming or future missions, such as Planck Surveyor and CMBPol, can match and possibly even surpass the sensitivity of current local tests.
Various classes of exotic singularity models have been studied as possible mimic models for the observed recent acceleration of the universe. Here we further study one of these classes and, under the assumption that they are phenomenological toy mode
We present evidence for variations in the fine-structure constant from Keck/HIRES spectra of 143 quasar absorption systems over the redshift range 0.2 < z_abs < 4.2. This includes 15 new systems, mostly at high-z (z_abs > 1.8). Our most robust estima
An axion-like field comprising $sim 10%$ of the energy density of the universe near matter-radiation equality is a candidate to resolve the Hubble tension; this is the early dark energy (EDE) model. However, as shown in Hill et al. (2020), the model
This thesis describes a detailed investigation of the effects of matter inhomogeneities on the cosmological evolution of the fine structure constant using the Bekenstein-Sandvik-Barrow-Magueijo (BSBM) theory. We briefly review the observational and t
We search for transient variations of the fine structure constant using data from a European network of fiber-linked optical atomic clocks. By searching for coherent variations in the recorded clock frequency comparisons across the network, we signif