ترغب بنشر مسار تعليمي؟ اضغط هنا

Helical quantum Hall phase in graphene on SrTiO$_3$

105   0   0.0 ( 0 )
 نشر من قبل Benjamin Sacepe
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ground state of charge neutral graphene under perpendicular magnetic field was predicted to be a quantum Hall topological insulator with a ferromagnetic order and spin-filtered, helical edge channels. In most experiments, however, an otherwise insulating state is observed and is accounted for by lattice-scale interactions that promote a broken-symmetry state with gapped bulk and edge excitations. We tuned the ground state of the graphene zeroth Landau level to the topological phase via a suitable screening of the Coulomb interaction with a SrTiO$_3$ high-$k$ dielectric substrate. We observed robust helical edge transport emerging at a magnetic field as low as 1 tesla and withstanding temperatures up to 110 kelvins over micron-long distances. This new and versatile graphene platform opens new avenues for spintronics and topological quantum computation.

قيم البحث

اقرأ أيضاً

Helical conductors with spin-momentum locking are promising platforms for Majorana fermions. Here we report observation of two topologically distinct phases supporting helical edge states in charge neutral Bernal-stacked tetralayer graphene in Hall b ar and Corbino geometries. As the magnetic field B and out-of-plane displacement field D are varied, we observe a phase diagram consisting of an insulating phase and two metallic phases, with 0, 1 and 2 helical edge states, respectively. These phases are accounted for by a theoretical model that relates their conductance to spin-polarization plateaus. Transitions between them arise from a competition among inter-layer hopping, electrostatic and exchange interaction energies. Our work highlights the complex competing symmetries and the rich quantum phases in few-layer graphene.
The recent experimental observations of the quantum Hall effect in 3D topological semimetals have attracted great attention, but there are still debates on its origin. We systematically study the dependence of the quantum Hall effect in topological s emimetals on the thickness, Fermi energy, and growth direction, taking into account the contributions from the Fermi-arc surface states, confinement-induced bulk subbands, and helical side-surface edge states. In particular, we focus on the intensively studied Dirac semimetal Cd$_{3}$As$_{2}$ and its slabs grown along experimentally accessible directions, including [001], [110], and [112]. We reveal an ignored mechanism from the Zeeman splitting of the helical edge states, which along with Fermi-arc 3D quantum Hall effect, may give a non-monotonic dependence of the Hall conductance plateaus on the magnetic field in the most experimentally studied [112] direction slab. Our results will be insightful for exploring the quantum Hall effects beyond two dimensions.
We investigate integer and half-integer filling states (uniform and unidimensional stripe states respectively) for graphene using the Hartree-Fock approximation. For fixed filling factor, the ratio between the scales of the Coulomb interaction and La ndau level spacing $g=(e^2/epsilon ell)/(hbar v_F/ell)$, with $ell$ the magnetic length, is a field-independent constant. However, when $B$ decreases, the number of filled negative Landau levels increases, which surprisingly turns out to decrease the amount of Landau level mixing. The resulting states at fixed filling factor $ u$ (for $ u$ not too big) have very little Landau level mixing even at arbitrarily weak magnetic fields. Thus in the density-field phase diagram, many different phases may persist down to the origin, in contrast to the more standard two dimensional electron gas, in which the origin is surrounded by Wigner crystal states. We demonstrate that the stripe amplitudes scale roughly as $B$, so that the density waves ``evaporate continuously as $Bto 0$. Tight-binding calculations give the same scaling for stripe amplitude and demonstrate that the effect is not an artifact of the cutoff procedure used in the continuum calculations.
Pristine, undoped graphene has a constant absorption of 2.3 % across the visible to near-infrared (VIS-NIR) region of the electromagnetic spectrum. Under certain conditions, such as nanostructuring and intense gating, graphene can interact more robus tly with VIS-NIR light and exhibit a large nonlinear optical response. Here, we explore the optical properties of graphene/LaAlO$_3$/SrTiO$_3$ nanostructures, where nanojunctions formed at the LaAlO$_3$/SrTiO$_3$ interface enable large (~10$^8$ V/m) electric fields to be applied to graphene over a scale of ~10 nm. Upon illumination with ultrafast VIS-NIR light, graphene/LaAlO$_3$/SrTiO$_3$ nanostructures produce broadband THz emission as well as a sum-frequency generated (SFG) response. Strong spectrally sharp, gate-tunable extinction features (>99.99%) are observed in both the VIS-NIR and SFG regions alongside significant intensification of the nonlinear response. The observed gate-tunable strong graphene-light interaction and nonlinear optical response are of fundamental interest and open the way for future exploitation in graphene-based optical devices.
Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires, and graphene. Recently, a new paradi gm has emerged with the advent of symmetry-protected surface states on the boundary of topological insulators, enabling the creation of electronic systems with novel properties. For example, time reversal symmetry (TRS) endows the massless charge carriers on the surface of a three-dimensional topological insulator with helicity, locking the orientation of their spin relative to their momentum. Weakly breaking this symmetry generates a gap on the surface, resulting in charge carriers with finite effective mass and exotic spin textures. Analogous manipulations of the one-dimensional boundary states of a two-dimensional topological insulator are also possible, but have yet to be observed in the leading candidate materials. Here, we demonstrate experimentally that charge neutral monolayer graphene displays a new type of quantum spin Hall (QSH) effect, previously thought to exist only in TRS topological insulators, when it is subjected to a very large magnetic field angled with respect to the graphene plane. Unlike in the TRS case, the QSH presented here is protected by a spin-rotation symmetry that emerges as electron spins in a half-filled Landau level are polarized by the large in-plane magnetic field. The properties of the resulting helical edge states can be modulated by balancing the applied field against an intrinsic antiferromagnetic instability, which tends to spontaneously break the spin-rotation symmetry. In the resulting canted antiferromagnetic (CAF) state, we observe transport signatures of gapped edge states, which constitute a new kind of one-dimensional electronic system with tunable band gap and associated spin-texture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا