ﻻ يوجد ملخص باللغة العربية
We show that there are infinitely many primes $p$ such that $p-1$ is divisible by a square $d^2 geq p^theta$ for $theta=1/2+1/2000.$ This improves the work of Matomaki (2009) who obtained the result for $theta=1/2-varepsilon$ (with the added constraint that $d$ is also a prime), which improved the result of Baier and Zhao (2006) with $theta=4/9-varepsilon.$ Similarly as in the work of Matomaki, we apply Harmans sieve method to detect primes $p equiv 1 , (d^2)$. To break the $theta=1/2$ barrier we prove a new bilinear equidistribution estimate modulo smooth square moduli $d^2$ by using a similar argument as Zhang (2014) used to obtain equidistribution beyond the Bombieri-Vinogradov range for primes with respect to smooth moduli. To optimize the argument we incorporate technical refinements from the Polymath project (2014). Since the moduli are squares, the method produces complete exponential sums modulo squares of primes which are estimated using the results of Cochrane and Zheng (2000).
Let $ xgeq 1 $ be a large number, let $ [x]=x-{x} $ be the largest integer function, and let $ sigma(n)$ be the sum of divisors function. This note presents the first proof of the asymptotic formula for the average order $ sum_{pleq x}sigma([x/p])=c_
Let $mathcal{R}$ be a finite set of integers satisfying appropriate local conditions. We show the existence of long clusters of primes $p$ in bounded length intervals with $p-b$ squarefree for all $b in mathcal{R}$. Moreover, we can enforce that the
Let $ba=(a_1,a_2,ldots,a_k)$, where $a_j (j=1,ldots,k)$ are positive integers such that $a_1 leq a_2 leq cdots leq a_k$. Let $d(ba;n)=sum_{n_1^{a_1}cdots n_k^{a_k}=n}1$ and $Delta(ba;x)$ be the error term of the summatory function of $d(ba;n)$. In t
We look at upper bounds for the count of certain primes related to the Fermat numbers $F_n=2^{2^n}+1$ called elite primes. We first note an oversight in a result of Krizek, Luca and Somer and give the corrected, slightly weaker upper bound. We then a
When the sequences of squares of primes is coloured with $K$ colours, where $K geq 1$ is an integer, let $s(K)$ be the smallest integer such that each sufficiently large integer can be written as a sum of no more than $s(K)$ squares of primes, all of