ترغب بنشر مسار تعليمي؟ اضغط هنا

An Enhanced Ad Event-Prediction Method Based on Feature Engineering

92   0   0.0 ( 0 )
 نشر من قبل Saeid Soheily Khah
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In digital advertising, Click-Through Rate (CTR) and Conversion Rate (CVR) are very important metrics for evaluating ad performance. As a result, ad event prediction systems are vital and widely used for sponsored search and display advertising as well as Real-Time Bidding (RTB). In this work, we introduce an enhanced method for ad event prediction (i.e. clicks,



قيم البحث

اقرأ أيضاً

In autonomous driving (AD), accurately predicting changes in the environment can effectively improve safety and comfort. Due to complex interactions among traffic participants, however, it is very hard to achieve accurate prediction for a long horizo n. To address this challenge, we propose prediction by anticipation, which views interaction in terms of a latent probabilistic generative process wherein some vehicles move partly in response to the anticipated motion of other vehicles. Under this view, consecutive data frames can be factorized into sequential samples from an action-conditional distribution that effectively generalizes to a wider range of actions and driving situations. Our proposed prediction model, variational Bayesian in nature, is trained to maximize the evidence lower bound (ELBO) of the log-likelihood of this conditional distribution. Evaluations of our approach with prominent AD datasets NGSIM I-80 and Argoverse show significant improvement over current state-of-the-art in both accuracy and generalization.
Trajectory owner prediction is the basis for many applications such as personalized recommendation, urban planning. Although much effort has been put on this topic, the results archived are still not good enough. Existing methods mainly employ RNNs t o model trajectories semantically due to the inherent sequential attribute of trajectories. However, these approaches are weak at Point of Interest (POI) representation learning and trajectory feature detection. Thus, the performance of existing solutions is far from the requirements of practical applications. In this paper, we propose a novel CNN-based Trajectory Owner Prediction (CNNTOP) method. Firstly, we connect all POI according to trajectories from all users. The result is a connected graph that can be used to generate more informative POI sequences than other approaches. Secondly, we employ the Node2Vec algorithm to encode each POI into a low-dimensional real value vector. Then, we transform each trajectory into a fixed-dimensional matrix, which is similar to an image. Finally, a CNN is designed to detect features and predict the owner of a given trajectory. The CNN can extract informative features from the matrix representations of trajectories by convolutional operations, Batch normalization, and $K$-max pooling operations. Extensive experiments on real datasets demonstrate that CNNTOP substantially outperforms existing solutions in terms of macro-Precision, macro-Recall, macro-F1, and accuracy.
Historical features are important in ads click-through rate (CTR) prediction, because they account for past engagements between users and ads. In this paper, we study how to efficiently construct historical features through counting features. The key challenge of such problem lies in how to automatically identify counting keys. We propose a tree-based method for counting key selection. The intuition is that a decision tree naturally provides various combinations of features, which could be used as counting key candidate. In order to select personalized counting features, we train one decision tree model per user, and the counting keys are selected across different users with a frequency-based importance measure. To validate the effectiveness of proposed solution, we conduct large scale experiments on Twitter video advertising data. In both online learning and offline training settings, the automatically identified counting features outperform the manually curated counting features.
Learning with feature evolution studies the scenario where the features of the data streams can evolve, i.e., old features vanish and new features emerge. Its goal is to keep the model always performing well even when the features happen to evolve. T o tackle this problem, canonical methods assume that the old features will vanish simultaneously and the new features themselves will emerge simultaneously as well. They also assume there is an overlapping period where old and new features both exist when the feature space starts to change. However, in reality, the feature evolution could be unpredictable, which means the features can vanish or emerge arbitrarily, causing the overlapping period incomplete. In this paper, we propose a novel paradigm: Prediction with Unpredictable Feature Evolution (PUFE) where the feature evolution is unpredictable. To address this problem, we fill the incomplete overlapping period and formulate it as a new matrix completion problem. We give a theoretical bound on the least number of observed entries to make the overlapping period intact. With this intact overlapping period, we leverage an ensemble method to take the advantage of both the old and new feature spaces without manually deciding which base models should be incorporated. Theoretical and experimental results validate that our method can always follow the best base models and thus realize the goal of learning with feature evolution.
In this article, we focus on the analysis of the potential factors driving the spread of influenza, and possible policies to mitigate the adverse effects of the disease. To be precise, we first invoke discrete Fourier transform (DFT) to conclude a ye arly periodic regional structure in the influenza activity, thus safely restricting ourselves to the analysis of the yearly influenza behavior. Then we collect a massive number of possible region-wise indicators contributing to the influenza mortality, such as consumption, immunization, sanitation, water quality, and other indicators from external data, with $1170$ dimensions in total. We extract significant features from the high dimensional indicators using a combination of data analysis techniques, including matrix completion, support vector machines (SVM), autoencoders, and principal component analysis (PCA). Furthermore, we model the international flow of migration and trade as a convolution on regional influenza activity, and solve the deconvolution problem as higher-order perturbations to the linear regression, thus separating regional and international factors related to the influenza mortality. Finally, both the original model and the perturbed model are tested on regional examples, as validations of our models. Pertaining to the policy, we make a proposal based on the connectivity data along with the previously extracted significant features to alleviate the impact of influenza, as well as efficiently propagate and carry out the policies. We conclude that environmental features and economic features are of significance to the influenza mortality. The model can be easily adapted to model other types of infectious diseases.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا