ﻻ يوجد ملخص باللغة العربية
We provide an efficient method for the calculation of high-gain, twin-beam generation in waveguides derived from a canonical treatment of Maxwells equations. Equations of motion are derived that naturally accommodate photon generation via spontaneous parametric down-conversion (SPDC) or spontaneous four-wave mixing (SFWM), and also include the effects of both self-phase modulation (SPM) of the pump, and of cross-phase modulation(XPM) of the twin beams by the pump. The equations we solve involve fields that evolve in space and are labelled by a frequency. We provide a proof that these fields satisfy bonafide commutation relations, and that in the distant past and future they reduce to standard time-evolving Heisenberg operators. Having solved for the input-output relations of these Heisenberg operators we also show how to construct the ket describing the quantum state of the twin-beams. Finally, we consider the example of high-gain SPDC in a waveguide with a flat nonlinearity profile, for which our approach provides an explicit solution that requires only a single matrix exponentiation.
Perturbation theory is a kind of estimation method based on theorem of Taylor expansion, and is useful to investigate electromagnetic solutions of small changes. By considering a sharp boundary as a limit of smoothed systems, previous study has solve
We investigate the dispersion properties of ridge Bragg-reflection waveguides to deduce their phasematching characteristics. These are crucial for exploiting them as sources of parametric down-conversion (PDC). In order to estimate the phasematching
Collinear double-pulse seeding of the High-Gain Harmonic Generation (HGHG) process in a free-electron laser (FEL) is a promising approach to facilitate various coherent nonlinear spectroscopy schemes in the extreme ultraviolet (XUV) spectral range. H
We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained fro
Integrated optical devices may replace bulk crystal or fiber based assemblies with a more compact and controllable photon pair and heralded single photon source and generate quantum light at telecommunications wavelengths. Here, we propose that a per