ﻻ يوجد ملخص باللغة العربية
Dukes (2014) and Konno, Shimizu, and Takei (2017) studied the periodicity for 2-state quantum walks whose coin operator is the Hadamard matrix on cycle graph C_N with N vertices. The present paper treats the periodicity for 3-state quantum walks on C_N. Our results follow from a new method based on cyclotomic field. This method shows a necessary condition for the coin operator of quantum walks to have the finite period. Moreover, we reveal the period T_N of two kinds of typical quantum walks, the Grover and Fourier walks. We prove that both walks do not have any finite period except for N=3, in which case T_3=6 (Grover), =12 (Fourier).
Quantum walks determined by the coin operator on graphs have been intensively studied. The typical examples of coin operator are the Grover and Fourier matrices. The periodicity of the Grover walk is well investigated. However, the corresponding resu
Quantum Stochastic Walks (QSW) allow for a generalization of both quantum and classical random walks by describing the dynamic evolution of an open quantum system on a network, with nodes corresponding to quantum states of a fixed basis. We consider
In this paper, we consider periodicity for space-inhomogeneous quantum walks on the cycle. For isospectral coin cases, we propose a spectral analysis. Based on the analysis, we extend the result for periodicity for Hadamard walk to some isospectral c
The finite dihedral group generated by one rotation and one reflection is the simplest case of the non-abelian group. Cayley graphs are diagrammatic counterparts of groups. In this paper, much attention is given to the Cayley graph of the dihedral gr
We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four-state and two-state particles. By quantifying the quantum correlations between the particle and position de