ﻻ يوجد ملخص باللغة العربية
Quantum walks determined by the coin operator on graphs have been intensively studied. The typical examples of coin operator are the Grover and Fourier matrices. The periodicity of the Grover walk is well investigated. However, the corresponding result on the Fourier walk is not known. In this paper, we present a necessary condition for the Fourier walk on regular graphs to have the finite period. As an application of our result, we show that the Fourier walks do not have any finite period for some classes of regular graphs such as complete graphs, cycle graphs with selfloops, and hypercubes.
Dukes (2014) and Konno, Shimizu, and Takei (2017) studied the periodicity for 2-state quantum walks whose coin operator is the Hadamard matrix on cycle graph C_N with N vertices. The present paper treats the periodicity for 3-state quantum walks on C
Characterizations graphs of some classes to induce periodic Grover walks have been studied for recent years. In particular, for the strongly regular graphs, it has been known that there are only three kinds of such graphs. Here, we focus on the perio
In this paper, we consider periodicity for space-inhomogeneous quantum walks on the cycle. For isospectral coin cases, we propose a spectral analysis. Based on the analysis, we extend the result for periodicity for Hadamard walk to some isospectral c
Strongly walk-regular graphs can be constructed as coset graphs of the duals of projective three-weight codes whose weights satisfy a certain equation. We provide classifications of the feasible parameters in the binary and ternary case for medium si
In this paper, we show reduction methods for search algorithms on graphs using quantum walks. By using a graph partitioning method called equitable partition for the the given graph, we determine effective subspace for the search algorithm to reduce