ﻻ يوجد ملخص باللغة العربية
We obtain a new form for the action of a nonrelativistic particle coupled to Newtonian gravity. The result is different from that existing in the literature which, as shown here, is riddled with problems and inconsistencies. The present derivation is based on the formalism of galilean gauge theory, introduced by us as an alternative method of analysing nonrelativistic symmetries in gravitational background.
A new approach to the study of nonrelativistic bosonic string in flat space time is introduced, basing on a holistic hamiltonian analysis of the minimal action for the string. This leads to a structurally new form of the action which is, however, equ
A detailed canonical treatment of a new action for a nonrelativistic particle coupled to background gravity, recently given by us, is performed both in the Lagrangian and Hamiltonian formulations. The equation of motion is shown to satisfy the geodes
We discuss a new formalism for constructing a non-relativistic (NR) theory in curved background. Named as galilean gauge theory, it is based on gauging the global galilean symmetry. It provides a systematic algorithm for obtaining the covariant curve
We build the general conformally invariant linear wave operator for a free, symmetric, second-rank tensor field in a d-dimensional ($dgeqslant 2$) metric manifold, and explicit the special case of maximally symmetric spaces. Under the assumptions mad
The current race in quantum communication -- endeavouring to establish a global quantum network -- must account for special and general relativistic effects. The well-studied general relativistic effects include Shapiro time-delay, gravitational lens