ﻻ يوجد ملخص باللغة العربية
Inspired by the Reward-Biased Maximum Likelihood Estimate method of adaptive control, we propose RBMLE -- a novel family of learning algorithms for stochastic multi-armed bandits (SMABs). For a broad range of SMABs including both the parametric Exponential Family as well as the non-parametric sub-Gaussian/Exponential family, we show that RBMLE yields an index policy. To choose the bias-growth rate $alpha(t)$ in RBMLE, we reveal the nontrivial interplay between $alpha(t)$ and the regret bound that generally applies in both the Exponential Family as well as the sub-Gaussian/Exponential family bandits. To quantify the finite-time performance, we prove that RBMLE attains order-optimality by adaptively estimating the unknown constants in the expression of $alpha(t)$ for Gaussian and sub-Gaussian bandits. Extensive experiments demonstrate that the proposed RBMLE achieves empirical regret performance competitive with the state-of-the-art methods, while being more computationally efficient and scalable in comparison to the best-performing ones among them.
Modifying the reward-biased maximum likelihood method originally proposed in the adaptive control literature, we propose novel learning algorithms to handle the explore-exploit trade-off in linear bandits problems as well as generalized linear bandit
We study incentivized exploration for the multi-armed bandit (MAB) problem where the players receive compensation for exploring arms other than the greedy choice and may provide biased feedback on reward. We seek to understand the impact of this drif
We propose a bandit algorithm that explores by randomizing its history of rewards. Specifically, it pulls the arm with the highest mean reward in a non-parametric bootstrap sample of its history with pseudo rewards. We design the pseudo rewards such
The Reward-Biased Maximum Likelihood Estimate (RBMLE) for adaptive control of Markov chains was proposed to overcome the central obstacle of what is variously called the fundamental closed-identifiability problem of adaptive control, the dual control
We propose an online algorithm for cumulative regret minimization in a stochastic multi-armed bandit. The algorithm adds $O(t)$ i.i.d. pseudo-rewards to its history in round $t$ and then pulls the arm with the highest average reward in its perturbed