ﻻ يوجد ملخص باللغة العربية
Understanding the dynamics of brain tumor progression is essential for optimal treatment planning. Cast in a mathematical formulation, it is typically viewed as evaluation of a system of partial differential equations, wherein the physiological processes that govern the growth of the tumor are considered. To personalize the model, i.e. find a relevant set of parameters, with respect to the tumor dynamics of a particular patient, the model is informed from empirical data, e.g., medical images obtained from diagnostic modalities, such as magnetic-resonance imaging. Existing model-observation coupling schemes require a large number of forward integrations of the biophysical model and rely on simplifying assumption on the functional form, linking the output of the model with the image information. In this work, we propose a learning-based technique for the estimation of tumor growth model parameters from medical scans. The technique allows for explicit evaluation of the posterior distribution of the parameters by sequentially training a mixture-density network, relaxing the constraint on the functional form and reducing the number of samples necessary to propagate through the forward model for the estimation. We test the method on synthetic and real scans of rats injected with brain tumors to calibrate the model and to predict tumor progression.
We present a 3D fully-automatic method for the calibration of partial differential equation (PDE) models of glioblastoma (GBM) growth with mass effect, the deformation of brain tissue due to the tumor. We quantify the mass effect, tumor proliferation
A significant challenge in Glioblastoma (GBM) management is identifying pseudo-progression (PsP), a benign radiation-induced effect, from tumor recurrence, on routine imaging following conventional treatment. Previous studies have linked tumor lobar
Myelination plays an important role in the neurological development of infant brain and MRI can visualize the myelination extension as T1 high and T2 low signal intensity at white matter. We tried to construct a convolutional neural network machine l
Background:Cognitive assessments represent the most common clinical routine for the diagnosis of Alzheimers Disease (AD). Given a large number of cognitive assessment tools and time-limited office visits, it is important to determine a proper set of
With growing emphasis on personalized cancer-therapies,radiogenomics has shown promise in identifying target tumor mutational status on routine imaging (i.e. MRI) scans. These approaches fall into 2 categories: (1) deep-learning/radiomics (context-ba