ﻻ يوجد ملخص باللغة العربية
The phase and the frequency of an exciton polariton condensate excited by a nonresonant pump can be efficiently manipulated by an external coherent light. Being tuned close to the resonance with the condensate eigenfrequency, the external laser light imposes its frequency to the condensate and locks its phase, thereby manifesting a synchronization effect. The conditions of formation of the phase synchronized regime are determined. The synchronization of a couple of closely spaced polariton condensates by a spatially uniform coherent light is examined. At the moderate strength of the coherent driving the synchronization is accompanied by the appearance of symmetry-breaking states of the polariton dyad, while these states are superseded by the symmetric state at the high-intensity driving. By employing a zero-dimensional model of coupled dissipative oscillators with both dissipative and conservative coupling, we study the bifurcation scenario of the symmetry-breaking state formation.
We demonstrate, both experimentally and theoretically, a new phenomenon: the presence of dissipative coupling in the system of driven bosons. This is evidenced for a particular case of externally excited spots of exciton-polariton condensates in semi
Open-dissipative systems obeying parity-time ($mathcal{PT}$) symmetry are capable of demonstrating oscillatory dynamics akin to the conservative systems. In contrast to limit cycle solutions characteristic of nonlinear systems, the $mathcal{PT}$-symm
We demonstrate that multiply-coupled spinor polariton condensates can be optically tuned through a sequence of spin-ordered phases by changing the coupling strength between nearest neighbors. For closed 4-condensate chains these phases span from ferr
We investigate the thermal robustness of traveling polariton condensates. We create remote condensates that have never been in contact, and study their interference in momentum space, when they travel with the same velocity, by means of time-resolved
We realise bistability in the spinor of polariton condensates under non-resonant optical excitation and in the absence of biasing external fields. Numerical modelling of the system using the Ginzburg-Landau equation with an internal Josephson couplin