ترغب بنشر مسار تعليمي؟ اضغط هنا

The optical control of phase locking of polariton condensates

75   0   0.0 ( 0 )
 نشر من قبل Igor Yu. Chestnov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phase and the frequency of an exciton polariton condensate excited by a nonresonant pump can be efficiently manipulated by an external coherent light. Being tuned close to the resonance with the condensate eigenfrequency, the external laser light imposes its frequency to the condensate and locks its phase, thereby manifesting a synchronization effect. The conditions of formation of the phase synchronized regime are determined. The synchronization of a couple of closely spaced polariton condensates by a spatially uniform coherent light is examined. At the moderate strength of the coherent driving the synchronization is accompanied by the appearance of symmetry-breaking states of the polariton dyad, while these states are superseded by the symmetric state at the high-intensity driving. By employing a zero-dimensional model of coupled dissipative oscillators with both dissipative and conservative coupling, we study the bifurcation scenario of the symmetry-breaking state formation.

قيم البحث

اقرأ أيضاً

We demonstrate, both experimentally and theoretically, a new phenomenon: the presence of dissipative coupling in the system of driven bosons. This is evidenced for a particular case of externally excited spots of exciton-polariton condensates in semi conductor microcavities. We observe that for two spatially separated condensates the dissipative coupling leads to the phase locking, either in-phase or out-of-phase, between the condensates. The effect depends on the distance between the condensates. For several excited spots, we observe the appearance of spontaneous vorticity in the system.
Open-dissipative systems obeying parity-time ($mathcal{PT}$) symmetry are capable of demonstrating oscillatory dynamics akin to the conservative systems. In contrast to limit cycle solutions characteristic of nonlinear systems, the $mathcal{PT}$-symm etric oscillations form a continuum of non-isolated orbits. However, precise sculpturing of the real potential and the gain-loss spatial profiles required for establishing of the $mathcal{PT}$-symmetry is practically challenging. The optical devices, such as lasers, exhibit relaxation dynamics and do not operate as the $mathcal{PT}$-symmetric systems. Here we demonstrate how these constraints can be overcome. We predict that a pair of optically trapped polariton condensates (a polariton dimer) can be excited and operated in the oscillating regime typical of the isolated systems. This regime can be realized in the presence of both dissipative and conservative coupling between the condensates and can be maintained at an arbitrary external pump intensity. Every orbit is characterised by a frequency comb appearing in the spectrum of a dimer in the presence of the conservative nonlinearity. Our results pave the way for the creation of the optical computing devices operating under the constant-wave external pumping.
We demonstrate that multiply-coupled spinor polariton condensates can be optically tuned through a sequence of spin-ordered phases by changing the coupling strength between nearest neighbors. For closed 4-condensate chains these phases span from ferr omagnetic (FM) to antiferromagnetic (AFM), separated by an unexpected crossover phase. This crossover phase is composed of alternating FM-AFM bonds. For larger 8 condensate chains, we show the critical role of spatial inhomogeneities and demonstrate a scheme to overcome them and prepare any desired spin state. Our observations thus demonstrate a fully controllable non-equilibrium spin lattice.
We investigate the thermal robustness of traveling polariton condensates. We create remote condensates that have never been in contact, and study their interference in momentum space, when they travel with the same velocity, by means of time-resolved photoluminescence. We determine the condensed to thermal, uncondensed polariton fraction, which shows a gradual decay with increasing temperature, and obtain the critical temperature for the Bose-Einstein-like condensate (BEC) phase transition. We tentatively compare our experimental findings with theoretical models, developed for atomic condensates, to describe the condensates coherence fading with temperature.
We realise bistability in the spinor of polariton condensates under non-resonant optical excitation and in the absence of biasing external fields. Numerical modelling of the system using the Ginzburg-Landau equation with an internal Josephson couplin g between the two spin components of the condensate qualitatively describes the experimental observations. We demonstrate that polariton spin bistability persists for sweep times in the range of $[10 mu sec,1 sec]$ offering a promising route to spin switches and spin memory elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا