ترغب بنشر مسار تعليمي؟ اضغط هنا

Short-term prediction of Electricity Outages Caused by Convective Storms

68   0   0.0 ( 0 )
 نشر من قبل Roope Tervo
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Prediction of power outages caused by convective storms which are highly localised in space and time is of crucial importance to power grid operators. We propose a new machine learning approach to predict the damage caused by storms. This approach hinges identifying and tracking of storm cells using weather radar images on the application of machine learning techniques. Overall prediction process consists of identifying storm cells from CAPPI weather radar images by contouring them with a solid 35 dBZ threshold, predicting a track of storm cells and classifying them based on their damage potential to power grid operators. Tracked storm cells are then classified by combining data obtained from weather radar, ground weather observations and lightning detectors. We compare random forest classifiers and deep neural networks as alternative methods to classify storm cells. The main challenge is that the training data are heavily imbalanced as extreme weather events are rare.

قيم البحث

اقرأ أيضاً

We consider the problem of predicting power outages in an electrical power grid due to hazards produced by convective storms. These storms produce extreme weather phenomena such as intense wind, tornadoes and lightning over a small area. In this pape r, we discuss the application of state-of-the-art machine learning techniques, such as random forest classifiers and deep neural networks, to predict the amount of damage caused by storms. We cast this application as a classification problem where the goal is to classify storm cells into a finite number of classes, each corresponding to a certain amount of expected damage. The classification method use as input features estimates for storm cell location and movement which has to be extracted from the raw data. A main challenge of this application is that the training data is heavily imbalanced as the occurrence of extreme weather events is rare. In order to address this issue, we applied SMOTE technique.
Continuous Glucose Monitoring (CGM) has enabled important opportunities for diabetes management. This study explores the use of CGM data as input for digital decision support tools. We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction and compare the RNNs to conventional time-series forecasting using Autoregressive Integrated Moving Average (ARIMA). A prediction horizon up to 90 min into the future is considered. In this context, we evaluate both population-based and patient-specific RNNs and contrast them to patient-specific ARIMA models and a simple baseline predicting future observations as the last observed. We find that the population-based RNN model is the best performing model across the considered prediction horizons without the need of patient-specific data. This demonstrates the potential of RNNs for STBG prediction in diabetes patients towards detecting/mitigating severe events in the STBG, in particular hypoglycemic events. However, further studies are needed in regards to the robustness and practical use of the investigated STBG prediction models.
Smooth power generation from solar stations demand accurate, reliable and efficient forecast of solar energy for optimal integration to cater market demand; however, the implicit instability of solar energy production may cause serious problems for t he smooth power generation. We report daily prediction of solar energy by exploiting the strength of machine learning techniques to capture and analyze complicated behavior of enormous features effectively. For this purpose, dataset comprising of 98 solar stations has been taken from energy competition of American Meteorological Society (AMS) for predicting daily solar energy. Forecast models of base line regressors including linear, ridge, lasso, decision tree, random forest and artificial neural networks have been implemented on the AMS solar dataset. Grid size is converted into two sections: 16x9 and 10x4 to ascertain attributes contributing more towards the generated power from densely located stations on global ensemble forecast system (GEFS). To evaluate the models, statistical measures of prediction error in terms of RMSE, MAE and R2_score have been analyzed and compared with the existing techniques. It has been observed that improved accuracy is achieved through random forest and ridge regressor for both grid sizes in contrast to all other proposed methods. Stability and reliability of the proposed schemes are evaluated on a single solar station as well as on multiple independent runs.
Road surface friction significantly impacts traffic safety and mobility. A precise road surface friction prediction model can help to alleviate the influence of inclement road conditions on traffic safety, Level of Service, traffic mobility, fuel eff iciency, and sustained economic productivity. Most related previous studies are laboratory-based methods that are difficult for practical implementation. Moreover, in other data-driven methods, the demonstrated time-series features of road surface conditions have not been considered. This study employed a Long-Short Term Memory (LSTM) neural network to develop a data-driven road surface friction prediction model based on historical data. The proposed prediction model outperformed the other baseline models in terms of the lowest value of predictive performance measurements. The influence of the number of time-lags and the predicting time interval on predictive accuracy was analyzed. In addition, the influence of adding road surface water thickness, road surface temperature and air temperature on predictive accuracy also were investigated. The findings of this study can support road maintenance strategy development and decision making, thus mitigating the impact of inclement road conditions on traffic mobility and safety. Future work includes a modified LSTM-based prediction model development by accommodating flexible time intervals between time-lags.
A machine learning algorithm is developed to forecast the CO2 emission intensities in electrical power grids in the Danish bidding zone DK2, distinguishing between average and marginal emissions. The analysis was done on data set comprised of a large number (473) of explanatory variables such as power production, demand, import, weather conditions etc. collected from selected neighboring zones. The number was reduced to less than 50 using both LASSO (a penalized linear regression analysis) and a forward feature selection algorithm. Three linear regression models that capture different aspects of the data (non-linearities and coupling of variables etc.) were created and combined into a final model using Softmax weighted average. Cross-validation is performed for debiasing and autoregressive moving average model (ARIMA) implemented to correct the residuals, making the final model the variant with exogenous inputs (ARIMAX). The forecasts with the corresponding uncertainties are given for two time horizons, below and above six hours. Marginal emissions came up independent of any conditions in the DK2 zone, suggesting that the marginal generators are located in the neighbouring zones. The developed methodology can be applied to any bidding zone in the European electricity network without requiring detailed knowledge about the zone.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا