ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet analysis of excitations in materials

101   0   0.0 ( 0 )
 نشر من قبل Umberto De Giovannini
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Controlled excitation of materials can transiently induce changed or novel properties with many fundamental and technological implications. Especially, the concept of Floquet engineering, manipulation of the electronic structure via dressing with external lasers, has attracted some recent interest. Here we review the progress made in defining Floquet materials properties and give a special focus on their signatures in experimental observables as well as considering recent experiments realizing Floquet phases in solid state materials. We discuss how a wide range of experiments with non-equilibrium electronic structure can be viewed by employing Floquet theory as an analysis tool providing a different view of excitations in solids.

قيم البحث

اقرأ أيضاً

The long-time thermal relaxation of (TMTTF)$_2$Br, Sr$_{14}$Cu$_{24}$O$_{41}$ and Sr$_2$Ca$_{12}$Cu$_{24}$O$_{41}$ single crystals at temperatures below 1 K and magnetic field up to 10 T is investigated. The data allow us to determine the relaxation time spectrum of the low energy excitations caused by the charge-density wave (CDW) or spin-density wave (SDW). The relaxation time is mainly determined by a thermal activated process for all investigated materials. The maximum relaxation time increases with increasing magnetic field. The distribution of barrier heights corresponds to one or two Gaussian functions. The doping of Sr$_{14-x}$Ca$_{x}$Cu$_{24}$O$_{41}$ with Ca leads to a drastic shift of the relaxation time spectrum to longer time. The maximum relaxation time changes from 50 s (x = 0) to 3000 s (x = 12) at 0.1 K and 10 T. The observed thermal relaxation at x=12 clearly indicates the formation of the SDW ground state at low temperatures.
We investigate the topological properties of Floquet-engineered twisted bilayer graphene above the magic angle driven by circularly polarized laser pulses. Employing a full Moire-unit-cell tight-binding Hamiltonian based on first-principles electroni c structure we show that the band topology in the bilayer, at twisting angles above 1.05$^circ$, essentially corresponds to the one of single-layer graphene. However, the ability to open topologically trivial gaps in this system by a bias voltage between the layers enables the full topological phase diagram to be explored, which is not possible in single-layer graphene. Circularly polarized light induces a transition to a topologically nontrivial Floquet band structure with the Berry curvature of a Chern insulator. Importantly, the twisting allows for tuning electronic energy scales, which implies that the electronic bandwidth can be tailored to match realistic driving frequencies in the ultraviolet or mid-infrared photon-energy regimes. This implies that Moire superlattices are an ideal playground for combining twistronics, Floquet engineering, and strongly interacting regimes out of thermal equilibrium.
The Weyl semimetal exhibits various interesting physical phenomena because of the Weyl points, i.e., linear band-crossings. We show by Floquet theory that a linearly polarized light applied to a band insulator can induce controllable Weyl points. In a tight-binding model, we classify different types of photoinduced Weyl points that lead to a rich phase diagram characterized by the Chern number defined on each momentum slices of the bulk states. Taking account of the nonequilibrium electron distribution, we calculate and explain the nonmonotonous anomalous Hall conductivity in terms of the light frequency controlled shift of Weyl points position, which also allows us to examine the conductivitys dependence on the driving electric field.
Floquet theory has spawned many exciting possibilities for electronic structure control with light with enormous potential for future applications. The experimental realization in solids, however, largely remains pending. In particular, the influence of scattering on the formation of Floquet-Bloch states remains poorly understood. Here we combine time- and angle-resolved photoemission spectroscopy with time-dependent density functional theory and a two-level model with relaxation to investigate the survival of Floquet-Bloch states in the presence of scattering. We find that Floquet-Bloch states will be destroyed if scattering -- activated by electronic excitations -- prevents the Bloch electrons from following the driving field coherently. The two-level model also shows that Floquet-Bloch states reappear at high field intensities where energy exchange with the driving field dominates over energy dissipation to the bath. Our results clearly indicate the importance of long scattering times combined with strong driving fields for the successful realization of various Floquet phenomena.
A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call Dirac materials. In order to establish this class of materials, we illustrate how Dirac fermions emerge in multiple entirely different condensed matter systems and we discuss how Dirac fermions have been identified experimentally using electron spectroscopy techniques (angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy). As a consequence of their common low-energy excitations, this diverse set of materials shares a significant number of universal properties in the low-energy (infrared) limit. We review these common properties including nodal points in the excitation spectrum, density of states, specific heat, transport, thermodynamic properties, impurity resonances, and magnetic field responses, as well as discuss many-body interaction effects. We further review how the emergence of Dirac excitations is controlled by specific symmetries of the material, such as time-reversal, gauge, and spin-orbit symmetries, and how by breaking these symmetries a finite Dirac mass is generated. We give examples of how the interaction of Dirac fermions with their distinct real material background leads to rich novel physics with common fingerprints such as the suppression of back scattering and impurity-induced resonant states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا